dsp processor now will process smaller chunks of audio at a time and loop over the audio data array which results in a much smaller RAM usage but probably longer execution times of IIR filters. Signed-off-by: Karl Osterseher <karli_o@gmx.at>
415 lines
14 KiB
C
415 lines
14 KiB
C
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <sys/time.h>
|
|
|
|
#include "freertos/FreeRTOS.h"
|
|
#if CONFIG_USE_DSP_PROCESSOR
|
|
#include "freertos/ringbuf.h"
|
|
#include "freertos/task.h"
|
|
|
|
#include "driver/i2s.h"
|
|
#include "dsps_biquad.h"
|
|
#include "dsps_biquad_gen.h"
|
|
#include "esp_log.h"
|
|
|
|
#include "board_pins_config.h"
|
|
#include "driver/dac.h"
|
|
#include "driver/i2s.h"
|
|
#include "dsp_processor.h"
|
|
#include "hal/i2s_hal.h"
|
|
|
|
#ifdef CONFIG_USE_BIQUAD_ASM
|
|
#define BIQUAD dsps_biquad_f32_ae32
|
|
#else
|
|
#define BIQUAD dsps_biquad_f32
|
|
#endif
|
|
|
|
static const char *TAG = "dspProc";
|
|
|
|
static uint32_t currentSamplerate = 0;
|
|
static uint32_t currentChunkInFrames = 0;
|
|
|
|
static ptype_t bq[12];
|
|
|
|
static double dynamic_vol = 1.0;
|
|
|
|
#define DSP_PROCESSOR_LEN 16
|
|
|
|
int dsp_processor(char *audio, size_t chunk_size, dspFlows_t dspFlow) {
|
|
int16_t len = chunk_size / 4;
|
|
int16_t valint;
|
|
uint16_t i;
|
|
volatile uint32_t *audio_tmp =
|
|
(uint32_t *)audio; // volatile needed to ensure 32 bit access
|
|
float *sbuffer0 = NULL;
|
|
float *sbufout0 = NULL;
|
|
|
|
// only process data if it is valid
|
|
if (audio_tmp) {
|
|
sbuffer0 = (float *)heap_caps_malloc(sizeof(float) * DSP_PROCESSOR_LEN,
|
|
MALLOC_CAP_8BIT);
|
|
if (sbuffer0 == NULL) {
|
|
ESP_LOGE(TAG, "No Memory allocated for dsp_processor sbuffer0");
|
|
|
|
return -1;
|
|
}
|
|
|
|
sbufout0 = (float *)heap_caps_malloc(sizeof(float) * DSP_PROCESSOR_LEN,
|
|
MALLOC_CAP_8BIT);
|
|
if (sbufout0 == NULL) {
|
|
ESP_LOGE(TAG, "No Memory allocated for dsp_processor sbufout0");
|
|
|
|
free(sbuffer0);
|
|
|
|
return -1;
|
|
}
|
|
|
|
switch (dspFlow) {
|
|
case dspfEQBassTreble: {
|
|
for (int k = 0; k < len; k += DSP_PROCESSOR_LEN) {
|
|
volatile uint32_t *tmp = (uint32_t *)(&audio_tmp[k]);
|
|
|
|
// channel 0
|
|
for (i = 0; i < DSP_PROCESSOR_LEN; i++) {
|
|
sbuffer0[i] = dynamic_vol * 0.5 *
|
|
((float)((int16_t)(tmp[i] & 0xFFFF))) / 32768;
|
|
}
|
|
|
|
// BASS
|
|
BIQUAD(sbuffer0, sbufout0, DSP_PROCESSOR_LEN, bq[8].coeffs, bq[8].w);
|
|
// TREBLE
|
|
BIQUAD(sbufout0, sbuffer0, DSP_PROCESSOR_LEN, bq[9].coeffs, bq[9].w);
|
|
|
|
for (i = 0; i < DSP_PROCESSOR_LEN; i++) {
|
|
valint = (int16_t)(sbuffer0[i] * 32768);
|
|
tmp[i] = (tmp[i] & 0xFFFF0000) + (uint32_t)valint;
|
|
}
|
|
|
|
// channel 1
|
|
for (i = 0; i < DSP_PROCESSOR_LEN; i++) {
|
|
sbuffer0[i] = dynamic_vol * 0.5 *
|
|
((float)((int16_t)((tmp[i] & 0xFFFF0000) >> 16))) /
|
|
32768;
|
|
}
|
|
|
|
// BASS
|
|
BIQUAD(sbuffer0, sbufout0, DSP_PROCESSOR_LEN, bq[10].coeffs,
|
|
bq[10].w);
|
|
// TREBLE
|
|
BIQUAD(sbufout0, sbuffer0, DSP_PROCESSOR_LEN, bq[11].coeffs,
|
|
bq[11].w);
|
|
|
|
for (i = 0; i < DSP_PROCESSOR_LEN; i++) {
|
|
valint = (int16_t)(sbuffer0[i] * 32768);
|
|
tmp[i] = (tmp[i] & 0xFFFF) + ((uint32_t)valint << 16);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case dspfStereo: {
|
|
for (int k = 0; k < len; k += DSP_PROCESSOR_LEN) {
|
|
volatile uint32_t *tmp = (uint32_t *)(&audio_tmp[k]);
|
|
|
|
// set volume
|
|
if (dynamic_vol != 1.0) {
|
|
for (i = 0; i < DSP_PROCESSOR_LEN; i++) {
|
|
tmp[i] =
|
|
((uint32_t)(dynamic_vol *
|
|
((float)((int16_t)((tmp[i] & 0xFFFF0000) >> 16))))
|
|
<< 16) +
|
|
(uint32_t)(dynamic_vol *
|
|
((float)((int16_t)(tmp[i] & 0xFFFF))));
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case dspfBassBoost: { // CH0 low shelf 6dB @ 400Hz
|
|
for (int k = 0; k < len; k += DSP_PROCESSOR_LEN) {
|
|
volatile uint32_t *tmp = (uint32_t *)(&audio_tmp[k]);
|
|
|
|
// channel 0
|
|
for (i = 0; i < DSP_PROCESSOR_LEN; i++) {
|
|
sbuffer0[i] = dynamic_vol * 0.5 *
|
|
((float)((int16_t)(tmp[i] & 0xFFFF))) / 32768;
|
|
}
|
|
BIQUAD(sbuffer0, sbufout0, DSP_PROCESSOR_LEN, bq[6].coeffs, bq[6].w);
|
|
|
|
for (i = 0; i < DSP_PROCESSOR_LEN; i++) {
|
|
valint = (int16_t)(sbufout0[i] * 32768);
|
|
tmp[i] = (tmp[i] & 0xFFFF0000) + (uint32_t)valint;
|
|
}
|
|
|
|
// channel 1
|
|
for (i = 0; i < DSP_PROCESSOR_LEN; i++) {
|
|
sbuffer0[i] = dynamic_vol * 0.5 *
|
|
((float)((int16_t)((tmp[i] & 0xFFFF0000) >> 16))) /
|
|
32768;
|
|
}
|
|
BIQUAD(sbuffer0, sbufout0, DSP_PROCESSOR_LEN, bq[7].coeffs, bq[7].w);
|
|
|
|
for (i = 0; i < DSP_PROCESSOR_LEN; i++) {
|
|
valint = (int16_t)(sbufout0[i] * 32768);
|
|
tmp[i] = (tmp[i] & 0xFFFF) + ((uint32_t)valint << 16);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case dspfBiamp: {
|
|
for (int k = 0; k < len; k += DSP_PROCESSOR_LEN) {
|
|
volatile uint32_t *tmp = (uint32_t *)(&audio_tmp[k]);
|
|
|
|
// Process audio ch0 LOW PASS FILTER
|
|
for (i = 0; i < DSP_PROCESSOR_LEN; i++) {
|
|
sbuffer0[i] = dynamic_vol * 0.5 *
|
|
((float)((int16_t)(tmp[i] & 0xFFFF))) / 32768;
|
|
}
|
|
BIQUAD(sbuffer0, sbufout0, DSP_PROCESSOR_LEN, bq[0].coeffs, bq[0].w);
|
|
BIQUAD(sbufout0, sbuffer0, DSP_PROCESSOR_LEN, bq[1].coeffs, bq[1].w);
|
|
|
|
for (i = 0; i < DSP_PROCESSOR_LEN; i++) {
|
|
valint = (int16_t)(sbuffer0[i] * 32768);
|
|
tmp[i] = (tmp[i] & 0xFFFF0000) + (uint32_t)valint;
|
|
}
|
|
|
|
// Process audio ch1 HIGH PASS FILTER
|
|
for (i = 0; i < DSP_PROCESSOR_LEN; i++) {
|
|
sbuffer0[i] = dynamic_vol * 0.5 *
|
|
((float)((int16_t)((tmp[i] & 0xFFFF0000) >> 16))) /
|
|
32768;
|
|
}
|
|
BIQUAD(sbuffer0, sbufout0, DSP_PROCESSOR_LEN, bq[2].coeffs, bq[2].w);
|
|
BIQUAD(sbufout0, sbuffer0, DSP_PROCESSOR_LEN, bq[3].coeffs, bq[3].w);
|
|
|
|
for (i = 0; i < DSP_PROCESSOR_LEN; i++) {
|
|
valint = (int16_t)(sbuffer0[i] * 32768);
|
|
tmp[i] = (tmp[i] & 0xFFFF) + ((uint32_t)valint << 16);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case dspf2DOT1: { // Process audio L + R LOW PASS FILTER
|
|
/*
|
|
BIQUAD(sbuffer2, sbuftmp0, len, bq[0].coeffs, bq[0].w);
|
|
BIQUAD(sbuftmp0, sbufout2, len, bq[1].coeffs, bq[1].w);
|
|
|
|
// Process audio L HIGH PASS FILTER
|
|
BIQUAD(sbuffer0, sbuftmp0, len, bq[2].coeffs, bq[2].w);
|
|
BIQUAD(sbuftmp0, sbufout0, len, bq[3].coeffs, bq[3].w);
|
|
|
|
// Process audio R HIGH PASS FILTER
|
|
BIQUAD(sbuffer1, sbuftmp0, len, bq[4].coeffs, bq[4].w);
|
|
BIQUAD(sbuftmp0, sbufout1, len, bq[5].coeffs, bq[5].w);
|
|
|
|
int16_t valint[5];
|
|
for (uint16_t i = 0; i < len; i++) {
|
|
valint[0] =
|
|
(muteCH[0] == 1) ? (int16_t)0 : (int16_t)(sbufout0[i] *
|
|
32768); valint[1] = (muteCH[1] == 1) ? (int16_t)0 :
|
|
(int16_t)(sbufout1[i] * 32768); valint[2] = (muteCH[2] == 1) ?
|
|
(int16_t)0 : (int16_t)(sbufout2[i] * 32768); dsp_audio[i * 4 + 0] =
|
|
(valint[2] & 0xff); dsp_audio[i * 4 + 1] = ((valint[2] & 0xff00) >>
|
|
8); dsp_audio[i * 4 + 2] = 0; dsp_audio[i * 4 + 3] = 0;
|
|
|
|
dsp_audio1[i * 4 + 0] = (valint[0] & 0xff);
|
|
dsp_audio1[i * 4 + 1] = ((valint[0] & 0xff00) >> 8);
|
|
dsp_audio1[i * 4 + 2] = (valint[1] & 0xff);
|
|
dsp_audio1[i * 4 + 3] = ((valint[1] & 0xff00) >> 8);
|
|
}
|
|
|
|
// TODO: this copy could be avoided if dsp_audio buffers are
|
|
// allocated dynamically and pointers are exchanged after
|
|
// audio was freed
|
|
memcpy(audio, dsp_audio, chunk_size);
|
|
|
|
ESP_LOGW(TAG, "Don't know what to do with dsp_audio1");
|
|
*/
|
|
ESP_LOGW(TAG, "dspf2DOT1, not implemented yet, using stereo instead");
|
|
} break;
|
|
|
|
case dspfFunkyHonda: { // Process audio L + R LOW PASS FILTER
|
|
/*
|
|
BIQUAD(sbuffer2, sbuftmp0, len, bq[0].coeffs, bq[0].w);
|
|
BIQUAD(sbuftmp0, sbufout2, len, bq[1].coeffs, bq[1].w);
|
|
|
|
// Process audio L HIGH PASS FILTER
|
|
BIQUAD(sbuffer0, sbuftmp0, len, bq[2].coeffs, bq[2].w);
|
|
BIQUAD(sbuftmp0, sbufout0, len, bq[3].coeffs, bq[3].w);
|
|
|
|
// Process audio R HIGH PASS FILTER
|
|
BIQUAD(sbuffer1, sbuftmp0, len, bq[4].coeffs, bq[4].w);
|
|
BIQUAD(sbuftmp0, sbufout1, len, bq[5].coeffs, bq[5].w);
|
|
|
|
uint16_t scale = 16384; // 32768
|
|
int16_t valint[5];
|
|
for (uint16_t i = 0; i < len; i++) {
|
|
valint[0] =
|
|
(muteCH[0] == 1) ? (int16_t)0 : (int16_t)(sbufout0[i] * scale);
|
|
valint[1] =
|
|
(muteCH[1] == 1) ? (int16_t)0 : (int16_t)(sbufout1[i] * scale);
|
|
valint[2] =
|
|
(muteCH[2] == 1) ? (int16_t)0 : (int16_t)(sbufout2[i] * scale);
|
|
valint[3] = valint[0] + valint[2];
|
|
valint[4] = -valint[2];
|
|
valint[5] = -valint[1] - valint[2];
|
|
dsp_audio[i * 4 + 0] = (valint[3] & 0xff);
|
|
dsp_audio[i * 4 + 1] = ((valint[3] & 0xff00) >> 8);
|
|
dsp_audio[i * 4 + 2] = (valint[2] & 0xff);
|
|
dsp_audio[i * 4 + 3] = ((valint[2] & 0xff00) >> 8);
|
|
|
|
dsp_audio1[i * 4 + 0] = (valint[4] & 0xff);
|
|
dsp_audio1[i * 4 + 1] = ((valint[4] & 0xff00) >> 8);
|
|
dsp_audio1[i * 4 + 2] = (valint[5] & 0xff);
|
|
dsp_audio1[i * 4 + 3] = ((valint[5] & 0xff00) >> 8);
|
|
}
|
|
|
|
// TODO: this copy could be avoided if dsp_audio buffers are
|
|
// allocated dynamically and pointers are exchanged after
|
|
// audio was freed
|
|
memcpy(audio, dsp_audio, chunk_size);
|
|
|
|
ESP_LOGW(TAG, "Don't know what to do with dsp_audio1");
|
|
*/
|
|
ESP_LOGW(TAG,
|
|
"dspfFunkyHonda, not implemented yet, using stereo instead");
|
|
} break;
|
|
|
|
default: { } break; }
|
|
|
|
free(sbuffer0);
|
|
sbuffer0 = NULL;
|
|
|
|
free(sbufout0);
|
|
sbufout0 = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// ESP32 DSP processor
|
|
//======================================================
|
|
// Each time a buffer of audio is passed to the DSP - samples are
|
|
// processed according to a dynamic list of audio processing nodes.
|
|
|
|
// Each audio processor node consist of a data struct holding the
|
|
// required weights and states for processing an automomous processing
|
|
// function. The high level parameters is maintained in the structure
|
|
// as well
|
|
|
|
// Release - Prove off concept
|
|
// ----------------------------------------
|
|
// Fixed 2x2 biquad flow Xover for biAmp systems
|
|
// Interface for cross over frequency and level
|
|
void dsp_setup_flow(double freq, uint32_t samplerate, uint32_t chunkInFrames) {
|
|
float f = freq / samplerate / 2.0;
|
|
|
|
if (((currentSamplerate == samplerate) &&
|
|
(currentChunkInFrames == chunkInFrames)) ||
|
|
(samplerate == 0) || (chunkInFrames == 0)) {
|
|
return;
|
|
}
|
|
|
|
currentSamplerate = samplerate;
|
|
currentChunkInFrames = chunkInFrames;
|
|
|
|
bq[0] = (ptype_t){LPF, f, 0, 0.707, NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
bq[1] = (ptype_t){LPF, f, 0, 0.707, NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
bq[2] = (ptype_t){HPF, f, 0, 0.707, NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
bq[3] = (ptype_t){HPF, f, 0, 0.707, NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
bq[4] = (ptype_t){HPF, f, 0, 0.707, NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
bq[5] = (ptype_t){HPF, f, 0, 0.707, NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
bq[6] = (ptype_t){LOWSHELF, f, 6, 0.707, NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
bq[7] = (ptype_t){LOWSHELF, f, 6, 0.707, NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
|
|
// TODO: make this (frequency and gain) dynamically adjustable
|
|
// test simple EQ control of low and high frequencies (bass, treble)
|
|
float bass_fc = 300.0 / samplerate;
|
|
float bass_gain = 6.0;
|
|
float treble_fc = 4000.0 / samplerate;
|
|
float treble_gain = 6.0;
|
|
// filters for CH 0
|
|
bq[8] = (ptype_t){LOWSHELF, bass_fc, bass_gain, 0.707,
|
|
NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
bq[9] = (ptype_t){HIGHSHELF, treble_fc, treble_gain, 0.707,
|
|
NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
// filters for CH 1
|
|
bq[10] = (ptype_t){LOWSHELF, bass_fc, bass_gain, 0.707,
|
|
NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
bq[11] = (ptype_t){HIGHSHELF, treble_fc, treble_gain, 0.707,
|
|
NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
|
|
for (int n = 0; n < sizeof(bq) / sizeof(bq[0]); n++) {
|
|
switch (bq[n].filtertype) {
|
|
case HIGHSHELF:
|
|
dsps_biquad_gen_highShelf_f32(bq[n].coeffs, bq[n].freq, bq[n].gain,
|
|
bq[n].q);
|
|
break;
|
|
|
|
case LOWSHELF:
|
|
dsps_biquad_gen_lowShelf_f32(bq[n].coeffs, bq[n].freq, bq[n].gain,
|
|
bq[n].q);
|
|
break;
|
|
|
|
case LPF:
|
|
dsps_biquad_gen_lpf_f32(bq[n].coeffs, bq[n].freq, bq[n].q);
|
|
break;
|
|
|
|
case HPF:
|
|
dsps_biquad_gen_hpf_f32(bq[n].coeffs, bq[n].freq, bq[n].q);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
// for (uint8_t i = 0; i <= 4; i++) {
|
|
// printf("%.6f ", bq[n].coeffs[i]);
|
|
// }
|
|
// printf("\n");
|
|
}
|
|
}
|
|
|
|
void dsp_set_xoverfreq(uint8_t freqh, uint8_t freql, uint32_t samplerate) {
|
|
float freq = freqh * 256 + freql;
|
|
// printf("%f\n", freq);
|
|
float f = freq / samplerate / 2.;
|
|
for (int8_t n = 0; n <= 5; n++) {
|
|
bq[n].freq = f;
|
|
switch (bq[n].filtertype) {
|
|
case LPF:
|
|
// for (uint8_t i = 0; i <= 4; i++) {
|
|
// printf("%.6f ", bq[n].coeffs[i]);
|
|
// }
|
|
// printf("\n");
|
|
dsps_biquad_gen_lpf_f32(bq[n].coeffs, bq[n].freq, bq[n].q);
|
|
// for (uint8_t i = 0; i <= 4; i++) {
|
|
// printf("%.6f ", bq[n].coeffs[i]);
|
|
// }
|
|
// printf("%f \n", bq[n].freq);
|
|
break;
|
|
case HPF:
|
|
dsps_biquad_gen_hpf_f32(bq[n].coeffs, bq[n].freq, bq[n].q);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void dsp_set_vol(double volume) {
|
|
if (volume >= 0 && volume <= 1.0) {
|
|
ESP_LOGI(TAG, "Set volume to %f", volume);
|
|
dynamic_vol = volume;
|
|
}
|
|
}
|
|
#endif
|