Files
snapclient/components/esp-dsp/examples/basic_math/main/dsps_math_main.c
Carlos 15b4baba28 - merge with original master from jorgen
- minimize RAM usage of all components
- use both IRAM and DRAM in player component so we can buffer up to 1s on modules without SPI RAM
- support fragemented pcm chunks so we can use all available RAM if there isn't a big enough block available but still enough HEAP
- reinclude all components from jorgen's master branch
- add custom i2s driver to get a precise timing of initial sync
- change wrong usage of esp_timer for latency measurement of snapcast protocol
- add player component
2021-08-19 21:57:16 +02:00

93 lines
2.9 KiB
C

// Copyright 2018-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_system.h"
#include "driver/spi_master.h"
#include "soc/gpio_struct.h"
#include "driver/gpio.h"
#include "driver/uart.h"
#include "soc/uart_struct.h"
#include <math.h>
#include "esp_dsp.h"
static const char *TAG = "main";
// This example shows how to use FFT from esp-dsp library
#define N_SAMPLES 1024
int N = N_SAMPLES;
// Input test array
float x1[N_SAMPLES];
// Window coefficients
float wind[N_SAMPLES];
// working complex array
float y_cf[N_SAMPLES*2];
// Pointers to result arrays
float* y1_cf = &y_cf[0];
static void process_and_show(float* data, int length)
{
dsps_fft2r_fc32(data, length);
// Bit reverse
dsps_bit_rev_fc32(data, length);
// Convert one complex vector to two complex vectors
dsps_cplx2reC_fc32(data, length);
for (int i = 0 ; i < length/2 ; i++) {
data[i] = 10 * log10f((data[i * 2 + 0] * data[i * 2 + 0] + data[i * 2 + 1] * data[i * 2 + 1])/N);
}
// Show power spectrum in 64x10 window from -100 to 0 dB from 0..N/4 samples
dsps_view(data, length/2, 64, 10, -120, 40, '|');
}
void app_main()
{
esp_err_t ret;
ESP_LOGI(TAG, "*** Start Example. ***");
ret = dsps_fft2r_init_fc32(NULL, CONFIG_DSP_MAX_FFT_SIZE);
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "Not possible to initialize FFT. Error = %i", ret);
return;
}
// Generate Hann window
dsps_wind_hann_f32(wind, N);
ESP_LOGI(TAG, "*** Multiply tone signal with Hann window by standard C loop. ***");
// Generate input signal
dsps_tone_gen_f32(x1, N, 1., 0.2, 0);
// Convert two input vectors to one complex vector
for (int i=0 ; i< N ; i++)
{
y_cf[i*2 + 0] = x1[i]*wind[i];
y_cf[i*2 + 1] = 0;
}
process_and_show(y_cf, N);
ESP_LOGI(TAG, "*** Multiply tone signal with Hann window by esp-dsp basic math functions. ***");
// Convert two input vectors to one complex vector with basic functions
dsps_mul_f32(x1, wind, y_cf, N, 1, 1, 2); // Multiply input array with window and store as real part
dsps_mulc_f32(&y_cf[1], &y_cf[1], N, 0, 2, 2); // Clear imaginary part of the complex signal
process_and_show(y_cf, N);
ESP_LOGI(TAG, "*** End Example. ***");
}