Files
snapclient/components/custom_driver/i2s.c
Karl Osterseher 76a9b9acce - remove bug in i2s driver resulting in overwriting DMA descriptor while initialization leading to wrong initial sync
- change some function return values from int8_t to int32_t
- improve syncing
  o try to mimic original algorithm used by badaix
- latency_buffer_full() call in player sporadically returns negative value
  which led to a unnecessary vTaskDelay --> resolved
- use esp_timer_get_time() instead of gettimeofday() for timestamping
- enable IRAM optimazations for WIFI
- decrease WIFI RX buffers

Signed-off-by: Karl Osterseher <karli_o@gmx.at>
2022-10-21 19:30:51 +02:00

1291 lines
47 KiB
C

// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Modifications copyright (C) 2021 CarlosDerSeher
#include <esp_types.h>
#include <math.h>
#include <stdbool.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "driver/gpio.h"
#include "hal/gpio_hal.h"
#include "i2s.h"
#include "soc/lldesc.h"
#include "soc/rtc.h"
#include "esp_attr.h"
#include "esp_efuse.h"
#include "esp_err.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_pm.h"
#include "esp_rom_gpio.h"
#include "sdkconfig.h"
static const char *I2S_TAG = "c_I2S";
#define I2S_CHECK(a, str, ret) \
if (!(a)) { \
ESP_LOGE(I2S_TAG, "%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret); \
}
#define I2S_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&i2s_spinlock[i2s_num])
#define I2S_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&i2s_spinlock[i2s_num])
#define I2S_ENTER_CRITICAL() portENTER_CRITICAL(&i2s_spinlock[i2s_num])
#define I2S_EXIT_CRITICAL() portEXIT_CRITICAL(&i2s_spinlock[i2s_num])
#define I2S_FULL_DUPLEX_SLAVE_MODE_MASK \
(I2S_MODE_TX | I2S_MODE_RX | I2S_MODE_SLAVE)
#define I2S_FULL_DUPLEX_MASTER_MODE_MASK \
(I2S_MODE_TX | I2S_MODE_RX | I2S_MODE_MASTER)
// TODO: Refactor to put this logic into LL
#define I2S_AD_BCK_FACTOR (2)
#define I2S_PDM_BCK_FACTOR (64)
#define I2S_BASE_CLK (2 * APB_CLK_FREQ)
/**
* @brief DMA buffer object
*
*/
typedef struct {
char **buf;
int buf_size;
int rw_pos;
void *curr_ptr;
SemaphoreHandle_t mux;
xQueueHandle queue;
lldesc_t **desc;
} i2s_dma_t;
/**
* @brief I2S object instance
*
*/
typedef struct {
i2s_port_t i2s_num; /*!< I2S port number*/
int queue_size; /*!< I2S event queue size*/
QueueHandle_t i2s_queue; /*!< I2S queue handler*/
int dma_buf_count; /*!< DMA buffer count, number of buffer*/
int dma_buf_len; /*!< DMA buffer length, length of each buffer*/
i2s_dma_t *rx; /*!< DMA Tx buffer*/
i2s_dma_t *tx; /*!< DMA Rx buffer*/
i2s_isr_handle_t i2s_isr_handle; /*!< I2S Interrupt handle*/
int channel_num; /*!< Number of channels*/
int bytes_per_sample; /*!< Bytes per sample*/
int bits_per_sample; /*!< Bits per sample*/
i2s_mode_t mode; /*!< I2S Working mode*/
uint32_t sample_rate; /*!< I2S sample rate */
bool use_apll; /*!< I2S use APLL clock */
bool tx_desc_auto_clear; /*!< I2S auto clear tx descriptor on underflow */
int fixed_mclk; /*!< I2S fixed MLCK clock */
double real_rate;
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_handle_t pm_lock;
#endif
i2s_hal_context_t hal; /*!< I2S hal context*/
} i2s_obj_t;
static i2s_obj_t *p_i2s_obj[I2S_NUM_MAX] = {0};
static portMUX_TYPE i2s_spinlock[I2S_NUM_MAX];
static i2s_dma_t *i2s_create_dma_queue(i2s_port_t i2s_num, int dma_buf_count,
int dma_buf_len);
static esp_err_t i2s_destroy_dma_queue(i2s_port_t i2s_num, i2s_dma_t *dma);
static inline void gpio_matrix_out_check(int gpio, uint32_t signal_idx,
bool out_inv, bool oen_inv) {
// if pin = -1, do not need to configure
if (gpio != -1) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio], PIN_FUNC_GPIO);
gpio_set_direction(gpio, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(gpio, signal_idx, out_inv, oen_inv);
}
}
static inline void gpio_matrix_in_check(int gpio, uint32_t signal_idx,
bool inv) {
if (gpio != -1) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio], PIN_FUNC_GPIO);
// Set direction, for some GPIOs, the input function are not enabled as
// default.
gpio_set_direction(gpio, GPIO_MODE_INPUT);
esp_rom_gpio_connect_in_signal(gpio, signal_idx, inv);
}
}
esp_err_t i2s_custom_clear_intr_status(i2s_port_t i2s_num, uint32_t clr_mask) {
I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG);
i2s_hal_clear_intr_status(&(p_i2s_obj[i2s_num]->hal), clr_mask);
return ESP_OK;
}
esp_err_t i2s_custom_enable_rx_intr(i2s_port_t i2s_num) {
I2S_ENTER_CRITICAL();
i2s_hal_enable_rx_intr(&(p_i2s_obj[i2s_num]->hal));
I2S_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t i2s_custom_disable_rx_intr(i2s_port_t i2s_num) {
I2S_ENTER_CRITICAL();
i2s_hal_disable_rx_intr(&(p_i2s_obj[i2s_num]->hal));
I2S_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t i2s_custom_disable_tx_intr(i2s_port_t i2s_num) {
I2S_ENTER_CRITICAL();
i2s_hal_disable_tx_intr(&(p_i2s_obj[i2s_num]->hal));
I2S_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t i2s_custom_enable_tx_intr(i2s_port_t i2s_num) {
I2S_ENTER_CRITICAL();
i2s_hal_enable_tx_intr(&(p_i2s_obj[i2s_num]->hal));
I2S_EXIT_CRITICAL();
return ESP_OK;
}
float i2s_custom_get_clk(i2s_port_t i2s_num) {
I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG);
return p_i2s_obj[i2s_num]->real_rate;
}
static esp_err_t i2s_isr_register(i2s_port_t i2s_num, int intr_alloc_flags,
void (*fn)(void *), void *arg,
i2s_isr_handle_t *handle) {
return esp_intr_alloc(i2s_periph_signal[i2s_num].irq, intr_alloc_flags, fn,
arg, handle);
}
static float i2s_apll_get_fi2s(int bits_per_sample, int sdm0, int sdm1,
int sdm2, int odir) {
int f_xtal = (int)rtc_clk_xtal_freq_get() * 1000000;
#if CONFIG_IDF_TARGET_ESP32
/* ESP32 rev0 silicon issue for APLL range/accuracy, please see ESP32 ECO
* document for more information on this */
if (esp_efuse_get_chip_ver() == 0) {
sdm0 = 0;
sdm1 = 0;
}
#endif
float fout = f_xtal * (sdm2 + sdm1 / 256.0f + sdm0 / 65536.0f + 4);
if (fout < SOC_I2S_APLL_MIN_FREQ || fout > SOC_I2S_APLL_MAX_FREQ) {
return SOC_I2S_APLL_MAX_FREQ;
}
float fpll = fout / (2 * (odir + 2)); //== fi2s (N=1, b=0, a=1)
return fpll / 2;
}
/**
* @brief APLL calculate function, was described by following:
* APLL Output frequency is given by the formula:
*
* apll_freq = xtal_freq * (4 + sdm2 + sdm1/256 +
* sdm0/65536)/((o_div + 2) * 2) apll_freq = fout / ((o_div + 2) * 2)
*
* The dividend in this expression should be in the range of 240 -
* 600 MHz. In rev. 0 of ESP32, sdm0 and sdm1 are unused and always set to 0.
* * sdm0 frequency adjustment parameter, 0..255
* * sdm1 frequency adjustment parameter, 0..255
* * sdm2 frequency adjustment parameter, 0..63
* * o_div frequency divider, 0..31
*
* The most accurate way to find the sdm0..2 and odir parameters is
* to loop through them all, then apply the above formula, finding the closest
* frequency to the desired one. But 256*256*64*32 = 134.217.728 loops are too
* slow with ESP32
* 1. We will choose the parameters with the highest level of
* change, With 350MHz<fout<500MHz, we limit the sdm2 from 4 to 9, Take average
* frequency close to the desired frequency, and select sdm2
* 2. Next, we look for sequences of less influential and more
* detailed parameters, also by taking the average of the largest and smallest
* frequencies closer to the desired frequency.
* 3. And finally, loop through all the most detailed of the
* parameters, finding the best desired frequency
*
* @param[in] rate The I2S Frequency (MCLK)
* @param[in] bits_per_sample The bits per sample
* @param[out] sdm0 The sdm 0
* @param[out] sdm1 The sdm 1
* @param[out] sdm2 The sdm 2
* @param[out] odir The odir
*
* @return ESP_ERR_INVALID_ARG or ESP_OK
*/
esp_err_t i2s_apll_calculate_fi2s(int rate, int bits_per_sample, int *sdm0,
int *sdm1, int *sdm2, int *odir) {
int _odir, _sdm0, _sdm1, _sdm2;
float avg;
float min_rate, max_rate, min_diff;
if (rate / bits_per_sample / 2 / 8 < SOC_I2S_APLL_MIN_RATE) {
return ESP_ERR_INVALID_ARG;
}
*sdm0 = 0;
*sdm1 = 0;
*sdm2 = 0;
*odir = 0;
min_diff = SOC_I2S_APLL_MAX_FREQ;
for (_sdm2 = 4; _sdm2 < 9; _sdm2++) {
max_rate = i2s_apll_get_fi2s(bits_per_sample, 255, 255, _sdm2, 0);
min_rate = i2s_apll_get_fi2s(bits_per_sample, 0, 0, _sdm2, 31);
avg = (max_rate + min_rate) / 2;
if (abs(avg - rate) < min_diff) {
min_diff = abs(avg - rate);
*sdm2 = _sdm2;
}
}
min_diff = SOC_I2S_APLL_MAX_FREQ;
for (_odir = 0; _odir < 32; _odir++) {
max_rate = i2s_apll_get_fi2s(bits_per_sample, 255, 255, *sdm2, _odir);
min_rate = i2s_apll_get_fi2s(bits_per_sample, 0, 0, *sdm2, _odir);
avg = (max_rate + min_rate) / 2;
if (abs(avg - rate) < min_diff) {
min_diff = abs(avg - rate);
*odir = _odir;
}
}
min_diff = SOC_I2S_APLL_MAX_FREQ;
for (_sdm2 = 4; _sdm2 < 9; _sdm2++) {
max_rate = i2s_apll_get_fi2s(bits_per_sample, 255, 255, _sdm2, *odir);
min_rate = i2s_apll_get_fi2s(bits_per_sample, 0, 0, _sdm2, *odir);
avg = (max_rate + min_rate) / 2;
if (abs(avg - rate) < min_diff) {
min_diff = abs(avg - rate);
*sdm2 = _sdm2;
}
}
min_diff = SOC_I2S_APLL_MAX_FREQ;
for (_sdm1 = 0; _sdm1 < 256; _sdm1++) {
max_rate = i2s_apll_get_fi2s(bits_per_sample, 255, _sdm1, *sdm2, *odir);
min_rate = i2s_apll_get_fi2s(bits_per_sample, 0, _sdm1, *sdm2, *odir);
avg = (max_rate + min_rate) / 2;
if (abs(avg - rate) < min_diff) {
min_diff = abs(avg - rate);
*sdm1 = _sdm1;
}
}
min_diff = SOC_I2S_APLL_MAX_FREQ;
for (_sdm0 = 0; _sdm0 < 256; _sdm0++) {
avg = i2s_apll_get_fi2s(bits_per_sample, _sdm0, *sdm1, *sdm2, *odir);
if (abs(avg - rate) < min_diff) {
min_diff = abs(avg - rate);
*sdm0 = _sdm0;
}
}
return ESP_OK;
}
esp_err_t i2s_custom_init_dma_tx_queues(i2s_port_t i2s_num, uint8_t *data,
size_t size, size_t *written,
uint32_t *currentDescriptor,
uint32_t *currentDescriptorOffset) {
size_t tmpSize = size;
uint32_t i;
I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG);
I2S_CHECK((p_i2s_obj[i2s_num]->tx), "tx NULL", ESP_ERR_INVALID_ARG);
i2s_custom_stop(i2s_num);
xSemaphoreTake(p_i2s_obj[i2s_num]->tx->mux, (portTickType)portMAX_DELAY);
i2s_hal_set_out_link_addr(&(p_i2s_obj[i2s_num]->hal),
(uint32_t)p_i2s_obj[i2s_num]->tx->desc[0]);
p_i2s_obj[i2s_num]->tx->curr_ptr = NULL;
p_i2s_obj[i2s_num]->tx->rw_pos = 0;
// fill DMA buffers
if ((data != NULL) && (written != NULL) && (size != 0)) {
size_t offset = *currentDescriptorOffset;
size_t maxDmaBufBytes = p_i2s_obj[i2s_num]->dma_buf_len *
p_i2s_obj[i2s_num]->bytes_per_sample *
p_i2s_obj[i2s_num]->channel_num;
for (i = *currentDescriptor; i < p_i2s_obj[i2s_num]->dma_buf_count; i++) {
char *buf = (char *)p_i2s_obj[i2s_num]->tx->desc[i]->buf;
if (tmpSize > maxDmaBufBytes) {
memcpy(buf, &data[offset], maxDmaBufBytes);
offset += maxDmaBufBytes;
// ESP_LOGW(I2S_TAG, "wrote %d to desc[%d]", maxDmaBufBytes, i);
tmpSize -= maxDmaBufBytes;
} else {
memcpy(buf, &data[offset], tmpSize);
offset += tmpSize;
// ESP_LOGW(I2S_TAG, "wrote %d to desc[%d]", tmpSize, i);
tmpSize = 0;
}
if (tmpSize == 0) {
break;
}
}
if (currentDescriptor) {
*currentDescriptor = i + 1;
}
if (currentDescriptorOffset) {
if (offset == size) {
*currentDescriptorOffset = 0;
} else {
*currentDescriptorOffset = offset;
}
}
*written = offset;
}
// empty queue
xQueueReset(p_i2s_obj[i2s_num]->tx->queue);
xSemaphoreGive(p_i2s_obj[i2s_num]->tx->mux);
return ESP_OK;
}
esp_err_t i2s_custom_set_clk(i2s_port_t i2s_num, uint32_t rate,
i2s_bits_per_sample_t bits, i2s_channel_t ch) {
int factor =
(256 % bits) ? 384 : 256; // According to hardware codec
// requirement(supported 256fs or 384fs)
int clkmInteger, clkmDecimals, bck = 0;
double denom = (double)1 / 64;
int channel = 2;
i2s_dma_t *save_tx = NULL, *save_rx = NULL;
I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG);
if (bits % 8 != 0 || bits > I2S_BITS_PER_SAMPLE_32BIT ||
bits < I2S_BITS_PER_SAMPLE_16BIT) {
ESP_LOGE(I2S_TAG, "Invalid bits per sample");
return ESP_ERR_INVALID_ARG;
}
if (p_i2s_obj[i2s_num] == NULL) {
ESP_LOGE(I2S_TAG, "Not initialized yet");
return ESP_ERR_INVALID_ARG;
}
p_i2s_obj[i2s_num]->sample_rate = rate;
double clkmdiv = (double)I2S_BASE_CLK / (rate * factor);
if (clkmdiv > 256) {
ESP_LOGE(I2S_TAG, "clkmdiv is too large\r\n");
return ESP_ERR_INVALID_ARG;
}
// wait all on-going writing finish
if ((p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) && p_i2s_obj[i2s_num]->tx) {
xSemaphoreTake(p_i2s_obj[i2s_num]->tx->mux, (portTickType)portMAX_DELAY);
}
if ((p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) && p_i2s_obj[i2s_num]->rx) {
xSemaphoreTake(p_i2s_obj[i2s_num]->rx->mux, (portTickType)portMAX_DELAY);
}
i2s_custom_stop(i2s_num);
i2s_hal_set_rx_mode(&(p_i2s_obj[i2s_num]->hal), ch, bits);
i2s_hal_set_tx_mode(&(p_i2s_obj[i2s_num]->hal), ch, bits);
if (p_i2s_obj[i2s_num]->channel_num != (int)ch) {
p_i2s_obj[i2s_num]->channel_num = (ch == 2) ? 2 : 1;
}
if ((int)bits != p_i2s_obj[i2s_num]->bits_per_sample) {
p_i2s_obj[i2s_num]->bits_per_sample = bits;
// Round bytes_per_sample up to next multiple of 16 bits
int halfwords_per_sample = (bits + 15) / 16;
p_i2s_obj[i2s_num]->bytes_per_sample = halfwords_per_sample * 2;
// Because limited of DMA buffer is 4092 bytes
if (p_i2s_obj[i2s_num]->dma_buf_len * p_i2s_obj[i2s_num]->bytes_per_sample *
p_i2s_obj[i2s_num]->channel_num >
4092) {
p_i2s_obj[i2s_num]->dma_buf_len = 4092 /
p_i2s_obj[i2s_num]->bytes_per_sample /
p_i2s_obj[i2s_num]->channel_num;
}
// Re-create TX DMA buffer
if (p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) {
save_tx = p_i2s_obj[i2s_num]->tx;
p_i2s_obj[i2s_num]->tx =
i2s_create_dma_queue(i2s_num, p_i2s_obj[i2s_num]->dma_buf_count,
p_i2s_obj[i2s_num]->dma_buf_len);
if (p_i2s_obj[i2s_num]->tx == NULL) {
ESP_LOGE(I2S_TAG, "Failed to create tx dma buffer");
i2s_custom_driver_uninstall(i2s_num);
return ESP_ERR_NO_MEM;
}
i2s_hal_set_out_link_addr(&(p_i2s_obj[i2s_num]->hal),
(uint32_t)p_i2s_obj[i2s_num]->tx->desc[0]);
// destroy old tx dma if exist
if (save_tx) {
i2s_destroy_dma_queue(i2s_num, save_tx);
}
}
// Re-create RX DMA buffer
if (p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) {
save_rx = p_i2s_obj[i2s_num]->rx;
p_i2s_obj[i2s_num]->rx =
i2s_create_dma_queue(i2s_num, p_i2s_obj[i2s_num]->dma_buf_count,
p_i2s_obj[i2s_num]->dma_buf_len);
if (p_i2s_obj[i2s_num]->rx == NULL) {
ESP_LOGE(I2S_TAG, "Failed to create rx dma buffer");
i2s_custom_driver_uninstall(i2s_num);
return ESP_ERR_NO_MEM;
}
i2s_hal_set_in_link(&(p_i2s_obj[i2s_num]->hal),
p_i2s_obj[i2s_num]->dma_buf_len *
p_i2s_obj[i2s_num]->channel_num *
p_i2s_obj[i2s_num]->bytes_per_sample,
(uint32_t)p_i2s_obj[i2s_num]->rx->desc[0]);
// destroy old rx dma if exist
if (save_rx) {
i2s_destroy_dma_queue(i2s_num, save_rx);
}
}
}
double mclk;
int sdm0, sdm1, sdm2, odir, m_scale = 8;
int fi2s_clk = rate * channel * bits * m_scale;
#if SOC_I2S_SUPPORTS_PDM
if (p_i2s_obj[i2s_num]->mode & I2S_MODE_PDM) {
uint32_t b_clk = 0;
if (p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) {
uint32_t fp, fs;
i2s_hal_get_tx_pdm(&(p_i2s_obj[i2s_num]->hal), &fp, &fs);
// Recommended set `fp = 960, fs = sample_rate / 100`
fs = rate / 100;
i2s_hal_tx_pdm_cfg(&(p_i2s_obj[i2s_num]->hal), fp, fs);
b_clk = rate * I2S_PDM_BCK_FACTOR * fp / fs;
} else if (p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) {
uint32_t dsr;
i2s_hal_get_rx_pdm(&(p_i2s_obj[i2s_num]->hal), &dsr);
b_clk = rate * I2S_PDM_BCK_FACTOR * (dsr ? 2 : 1);
}
fi2s_clk = b_clk * m_scale;
int factor2 = 5;
mclk = b_clk * factor2;
clkmdiv = ((double)I2S_BASE_CLK) / mclk;
clkmInteger = clkmdiv;
clkmDecimals = (clkmdiv - clkmInteger) / denom;
bck = mclk / b_clk;
} else
#endif
{
clkmInteger = clkmdiv;
clkmDecimals = (clkmdiv - clkmInteger) / denom;
mclk = clkmInteger + denom * clkmDecimals;
bck = factor / (bits * channel);
}
if (p_i2s_obj[i2s_num]->use_apll && p_i2s_obj[i2s_num]->fixed_mclk) {
fi2s_clk = p_i2s_obj[i2s_num]->fixed_mclk;
m_scale = fi2s_clk / bits / rate / channel;
}
if (p_i2s_obj[i2s_num]->use_apll &&
i2s_apll_calculate_fi2s(fi2s_clk, bits, &sdm0, &sdm1, &sdm2, &odir) ==
ESP_OK) {
ESP_LOGD(I2S_TAG, "sdm0=%d, sdm1=%d, sdm2=%d, odir=%d", sdm0, sdm1, sdm2,
odir);
rtc_clk_apll_enable(1, sdm0, sdm1, sdm2, odir);
i2s_hal_set_clk_div(&(p_i2s_obj[i2s_num]->hal), 1, 1, 0, m_scale, m_scale);
i2s_hal_set_clock_sel(&(p_i2s_obj[i2s_num]->hal), I2S_CLK_APLL);
double fi2s_rate = i2s_apll_get_fi2s(bits, sdm0, sdm1, sdm2, odir);
p_i2s_obj[i2s_num]->real_rate = fi2s_rate / bits / channel / m_scale;
ESP_LOGI(I2S_TAG,
"APLL: Req RATE: %d, real rate: %0.3f, BITS: %u, CLKM: %u, "
"BCK_M: %u, MCLK: %0.3f, SCLK: %f, diva: %d, divb: %d",
rate, fi2s_rate / bits / channel / m_scale, bits, 1, m_scale,
fi2s_rate, fi2s_rate / 8, 1, 0);
} else {
i2s_hal_set_clock_sel(&(p_i2s_obj[i2s_num]->hal), I2S_CLK_D2CLK);
i2s_hal_set_clk_div(&(p_i2s_obj[i2s_num]->hal), clkmInteger, 63,
clkmDecimals, bck, bck);
double real_rate = (double)(I2S_BASE_CLK / (bck * bits * clkmInteger) / 2);
p_i2s_obj[i2s_num]->real_rate = real_rate;
ESP_LOGI(I2S_TAG,
"PLL_D2: Req RATE: %d, real rate: %0.3f, BITS: %u, CLKM: %u, "
"BCK: %u, MCLK: %0.3f, SCLK: %f, diva: %d, divb: %d",
rate, real_rate, bits, clkmInteger, bck,
(double)I2S_BASE_CLK / mclk, real_rate * bits * channel, 64,
clkmDecimals);
}
if (p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) {
p_i2s_obj[i2s_num]->tx->curr_ptr = NULL;
p_i2s_obj[i2s_num]->tx->rw_pos = 0;
}
if (p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) {
p_i2s_obj[i2s_num]->rx->curr_ptr = NULL;
p_i2s_obj[i2s_num]->rx->rw_pos = 0;
}
i2s_hal_set_tx_bits_mod(&(p_i2s_obj[i2s_num]->hal), bits);
i2s_hal_set_rx_bits_mod(&(p_i2s_obj[i2s_num]->hal), bits);
// wait all writing on-going finish
if ((p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) && p_i2s_obj[i2s_num]->tx) {
xSemaphoreGive(p_i2s_obj[i2s_num]->tx->mux);
}
if ((p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) && p_i2s_obj[i2s_num]->rx) {
xSemaphoreGive(p_i2s_obj[i2s_num]->rx->mux);
}
// i2s_custom_start(i2s_num); // don't start just yet, we want to
// fill dma buffer first return ESP_OK;
// ensure all DMA buffers are available right after initialization
// ENSURE i2s_custom_start() isn't called before i2s_write has filled at
// least one buffer
return i2s_custom_init_dma_tx_queues(i2s_num, NULL, 0, NULL, NULL, NULL);
}
static void IRAM_ATTR i2s_intr_handler_default(void *arg) {
i2s_obj_t *p_i2s = (i2s_obj_t *)arg;
uint32_t status;
i2s_hal_get_intr_status(&(p_i2s->hal), &status);
if (status == 0) {
// Avoid spurious interrupt
return;
}
i2s_event_t i2s_event;
int dummy;
portBASE_TYPE high_priority_task_awoken = 0;
lldesc_t *finish_desc = NULL;
if ((status & I2S_INTR_OUT_DSCR_ERR) || (status & I2S_INTR_IN_DSCR_ERR)) {
ESP_EARLY_LOGE(I2S_TAG, "dma error, interrupt status: 0x%08x", status);
if (p_i2s->i2s_queue) {
i2s_event.type = I2S_EVENT_DMA_ERROR;
if (xQueueIsQueueFullFromISR(p_i2s->i2s_queue)) {
xQueueReceiveFromISR(p_i2s->i2s_queue, &dummy,
&high_priority_task_awoken);
}
xQueueSendFromISR(p_i2s->i2s_queue, (void *)&i2s_event,
&high_priority_task_awoken);
}
}
if ((status & I2S_INTR_OUT_EOF) && p_i2s->tx) {
i2s_hal_get_out_eof_des_addr(&(p_i2s->hal), (uint32_t *)&finish_desc);
// All buffers are empty. This means we have an underflow on our hands.
if (xQueueIsQueueFullFromISR(p_i2s->tx->queue)) {
xQueueReceiveFromISR(p_i2s->tx->queue, &dummy,
&high_priority_task_awoken);
// See if tx descriptor needs to be auto cleared:
// This will avoid any kind of noise that may get introduced due to
// transmission of previous data from tx descriptor on I2S line.
if (p_i2s->tx_desc_auto_clear == true) {
memset((void *)dummy, 0, p_i2s->tx->buf_size);
}
}
xQueueSendFromISR(p_i2s->tx->queue, (void *)(&finish_desc->buf),
&high_priority_task_awoken);
if (p_i2s->i2s_queue) {
i2s_event.type = I2S_EVENT_TX_DONE;
if (xQueueIsQueueFullFromISR(p_i2s->i2s_queue)) {
xQueueReceiveFromISR(p_i2s->i2s_queue, &dummy,
&high_priority_task_awoken);
}
xQueueSendFromISR(p_i2s->i2s_queue, (void *)&i2s_event,
&high_priority_task_awoken);
}
}
if ((status & I2S_INTR_IN_SUC_EOF) && p_i2s->rx) {
// All buffers are full. This means we have an overflow.
i2s_hal_get_in_eof_des_addr(&(p_i2s->hal), (uint32_t *)&finish_desc);
if (xQueueIsQueueFullFromISR(p_i2s->rx->queue)) {
xQueueReceiveFromISR(p_i2s->rx->queue, &dummy,
&high_priority_task_awoken);
}
xQueueSendFromISR(p_i2s->rx->queue, (void *)(&finish_desc->buf),
&high_priority_task_awoken);
if (p_i2s->i2s_queue) {
i2s_event.type = I2S_EVENT_RX_DONE;
if (p_i2s->i2s_queue && xQueueIsQueueFullFromISR(p_i2s->i2s_queue)) {
xQueueReceiveFromISR(p_i2s->i2s_queue, &dummy,
&high_priority_task_awoken);
}
xQueueSendFromISR(p_i2s->i2s_queue, (void *)&i2s_event,
&high_priority_task_awoken);
}
}
i2s_hal_clear_intr_status(&(p_i2s->hal), status);
if (high_priority_task_awoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
static esp_err_t i2s_destroy_dma_queue(i2s_port_t i2s_num, i2s_dma_t *dma) {
int bux_idx;
if (p_i2s_obj[i2s_num] == NULL) {
ESP_LOGE(I2S_TAG, "Not initialized yet");
return ESP_ERR_INVALID_ARG;
}
if (dma == NULL) {
ESP_LOGE(I2S_TAG, "dma is NULL");
return ESP_ERR_INVALID_ARG;
}
for (bux_idx = 0; bux_idx < p_i2s_obj[i2s_num]->dma_buf_count; bux_idx++) {
if (dma->desc && dma->desc[bux_idx]) {
free(dma->desc[bux_idx]);
}
if (dma->buf && dma->buf[bux_idx]) {
free(dma->buf[bux_idx]);
}
}
if (dma->buf) {
free(dma->buf);
}
if (dma->desc) {
free(dma->desc);
}
vQueueDelete(dma->queue);
vSemaphoreDelete(dma->mux);
free(dma);
return ESP_OK;
}
static i2s_dma_t *i2s_create_dma_queue(i2s_port_t i2s_num, int dma_buf_count,
int dma_buf_len) {
int bux_idx;
int sample_size =
p_i2s_obj[i2s_num]->bytes_per_sample * p_i2s_obj[i2s_num]->channel_num;
i2s_dma_t *dma = (i2s_dma_t *)malloc(sizeof(i2s_dma_t));
if (dma == NULL) {
ESP_LOGE(I2S_TAG, "Error malloc i2s_dma_t");
return NULL;
}
memset(dma, 0, sizeof(i2s_dma_t));
dma->buf = (char **)malloc(sizeof(char *) * dma_buf_count);
if (dma->buf == NULL) {
ESP_LOGE(I2S_TAG, "Error malloc dma buffer pointer");
free(dma);
return NULL;
}
memset(dma->buf, 0, sizeof(char *) * dma_buf_count);
for (bux_idx = 0; bux_idx < dma_buf_count; bux_idx++) {
dma->buf[bux_idx] =
(char *)heap_caps_calloc(1, dma_buf_len * sample_size, MALLOC_CAP_DMA);
if (dma->buf[bux_idx] == NULL) {
ESP_LOGE(I2S_TAG, "Error malloc dma buffer");
i2s_destroy_dma_queue(i2s_num, dma);
return NULL;
}
ESP_LOGD(I2S_TAG, "Addr[%d] = %d", bux_idx, (int)dma->buf[bux_idx]);
}
dma->desc = (lldesc_t **)malloc(sizeof(lldesc_t *) * dma_buf_count);
if (dma->desc == NULL) {
ESP_LOGE(I2S_TAG, "Error malloc dma description");
i2s_destroy_dma_queue(i2s_num, dma);
return NULL;
}
for (bux_idx = 0; bux_idx < dma_buf_count; bux_idx++) {
dma->desc[bux_idx] =
(lldesc_t *)heap_caps_malloc(sizeof(lldesc_t), MALLOC_CAP_DMA);
if (dma->desc[bux_idx] == NULL) {
ESP_LOGE(I2S_TAG, "Error malloc dma description entry");
i2s_destroy_dma_queue(i2s_num, dma);
return NULL;
}
}
for (bux_idx = 0; bux_idx < dma_buf_count; bux_idx++) {
dma->desc[bux_idx]->owner = 1;
dma->desc[bux_idx]->eof = 1;
dma->desc[bux_idx]->sosf = 0;
dma->desc[bux_idx]->length = dma_buf_len * sample_size;
dma->desc[bux_idx]->size = dma_buf_len * sample_size;
dma->desc[bux_idx]->buf = (uint8_t *)dma->buf[bux_idx];
dma->desc[bux_idx]->offset = 0;
dma->desc[bux_idx]->empty =
(uint32_t)((bux_idx < (dma_buf_count - 1)) ? (dma->desc[bux_idx + 1])
: dma->desc[0]);
}
dma->queue = xQueueCreate(dma_buf_count - 1, sizeof(char *));
dma->mux = xSemaphoreCreateMutex();
dma->buf_size = dma_buf_len * sample_size;
ESP_LOGI(I2S_TAG, "DMA Malloc info, datalen=blocksize=%d, dma_buf_count=%d",
dma_buf_len * sample_size, dma_buf_count);
return dma;
}
esp_err_t i2s_custom_start(i2s_port_t i2s_num) {
I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG);
// start DMA link
I2S_ENTER_CRITICAL();
i2s_hal_reset(&(p_i2s_obj[i2s_num]->hal));
esp_intr_disable(p_i2s_obj[i2s_num]->i2s_isr_handle);
i2s_hal_clear_intr_status(&(p_i2s_obj[i2s_num]->hal), I2S_INTR_MAX);
if (p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) {
i2s_custom_enable_tx_intr(i2s_num);
i2s_hal_start_tx(&(p_i2s_obj[i2s_num]->hal));
}
if (p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) {
i2s_custom_enable_rx_intr(i2s_num);
i2s_hal_start_rx(&(p_i2s_obj[i2s_num]->hal));
}
esp_intr_enable(p_i2s_obj[i2s_num]->i2s_isr_handle);
I2S_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t i2s_custom_stop(i2s_port_t i2s_num) {
I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG);
I2S_ENTER_CRITICAL();
esp_intr_disable(p_i2s_obj[i2s_num]->i2s_isr_handle);
if (p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) {
i2s_hal_stop_tx(&(p_i2s_obj[i2s_num]->hal));
i2s_custom_disable_tx_intr(i2s_num);
}
if (p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) {
i2s_hal_stop_rx(&(p_i2s_obj[i2s_num]->hal));
i2s_custom_disable_rx_intr(i2s_num);
}
uint32_t mask;
i2s_hal_get_intr_status(&(p_i2s_obj[i2s_num]->hal), &mask);
i2s_hal_clear_intr_status(&(p_i2s_obj[i2s_num]->hal), mask);
I2S_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t i2s_custom_set_pin(i2s_port_t i2s_num, const i2s_pin_config_t *pin) {
I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG);
if (pin == NULL) {
return ESP_ERR_INVALID_ARG;
}
if (pin->bck_io_num != -1 && !GPIO_IS_VALID_GPIO(pin->bck_io_num)) {
ESP_LOGE(I2S_TAG, "bck_io_num error");
return ESP_FAIL;
}
if (pin->ws_io_num != -1 && !GPIO_IS_VALID_GPIO(pin->ws_io_num)) {
ESP_LOGE(I2S_TAG, "ws_io_num error");
return ESP_FAIL;
}
if (pin->data_out_num != -1 &&
!GPIO_IS_VALID_OUTPUT_GPIO(pin->data_out_num)) {
ESP_LOGE(I2S_TAG, "data_out_num error");
return ESP_FAIL;
}
if (pin->data_in_num != -1 && !GPIO_IS_VALID_GPIO(pin->data_in_num)) {
ESP_LOGE(I2S_TAG, "data_in_num error");
return ESP_FAIL;
}
int bck_sig = -1, ws_sig = -1, data_out_sig = -1, data_in_sig = -1;
// Each IIS hw module has a RX and TX unit.
// For TX unit, the output signal index should be I2SnO_xxx_OUT_IDX
// For TX unit, the input signal index should be I2SnO_xxx_IN_IDX
if (p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) {
if (p_i2s_obj[i2s_num]->mode & I2S_MODE_MASTER) {
bck_sig = i2s_periph_signal[i2s_num].o_bck_out_sig;
ws_sig = i2s_periph_signal[i2s_num].o_ws_out_sig;
data_out_sig = i2s_periph_signal[i2s_num].o_data_out_sig;
} else if (p_i2s_obj[i2s_num]->mode & I2S_MODE_SLAVE) {
bck_sig = i2s_periph_signal[i2s_num].o_bck_in_sig;
ws_sig = i2s_periph_signal[i2s_num].o_ws_in_sig;
data_out_sig = i2s_periph_signal[i2s_num].o_data_out_sig;
}
}
// For RX unit, the output signal index should be I2SnI_xxx_OUT_IDX
// For RX unit, the input signal index should be I2SnI_xxx_IN_IDX
if (p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) {
if (p_i2s_obj[i2s_num]->mode & I2S_MODE_MASTER) {
bck_sig = i2s_periph_signal[i2s_num].i_bck_out_sig;
ws_sig = i2s_periph_signal[i2s_num].i_ws_out_sig;
data_in_sig = i2s_periph_signal[i2s_num].i_data_in_sig;
} else if (p_i2s_obj[i2s_num]->mode & I2S_MODE_SLAVE) {
bck_sig = i2s_periph_signal[i2s_num].i_bck_in_sig;
ws_sig = i2s_periph_signal[i2s_num].i_ws_in_sig;
data_in_sig = i2s_periph_signal[i2s_num].i_data_in_sig;
}
}
// For "full-duplex + slave" mode, we should select RX signal index for ws
// and bck. For "full-duplex + master" mode, we should select TX signal index
// for ws and bck.
if ((p_i2s_obj[i2s_num]->mode & I2S_FULL_DUPLEX_SLAVE_MODE_MASK) ==
I2S_FULL_DUPLEX_SLAVE_MODE_MASK) {
bck_sig = i2s_periph_signal[i2s_num].i_bck_in_sig;
ws_sig = i2s_periph_signal[i2s_num].i_ws_in_sig;
} else if ((p_i2s_obj[i2s_num]->mode & I2S_FULL_DUPLEX_MASTER_MODE_MASK) ==
I2S_FULL_DUPLEX_MASTER_MODE_MASK) {
bck_sig = i2s_periph_signal[i2s_num].o_bck_out_sig;
ws_sig = i2s_periph_signal[i2s_num].o_ws_out_sig;
}
gpio_matrix_out_check(pin->data_out_num, data_out_sig, 0, 0);
gpio_matrix_in_check(pin->data_in_num, data_in_sig, 0);
if (p_i2s_obj[i2s_num]->mode & I2S_MODE_MASTER) {
gpio_matrix_out_check(pin->ws_io_num, ws_sig, 0, 0);
gpio_matrix_out_check(pin->bck_io_num, bck_sig, 0, 0);
} else if (p_i2s_obj[i2s_num]->mode & I2S_MODE_SLAVE) {
gpio_matrix_in_check(pin->ws_io_num, ws_sig, 0);
gpio_matrix_in_check(pin->bck_io_num, bck_sig, 0);
}
ESP_LOGD(I2S_TAG, "data: out %d, in: %d, ws: %d, bck: %d", data_out_sig,
data_in_sig, ws_sig, bck_sig);
return ESP_OK;
}
esp_err_t i2s_custom_set_sample_rates(i2s_port_t i2s_num, uint32_t rate) {
I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG);
I2S_CHECK((p_i2s_obj[i2s_num]->bytes_per_sample > 0),
"bits_per_sample not set", ESP_ERR_INVALID_ARG);
return i2s_custom_set_clk(i2s_num, rate, p_i2s_obj[i2s_num]->bits_per_sample,
p_i2s_obj[i2s_num]->channel_num);
}
#if SOC_I2S_SUPPORTS_PDM
esp_err_t i2s_custom_set_pdm_rx_down_sample(i2s_port_t i2s_num,
i2s_pdm_dsr_t dsr) {
I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG);
i2s_hal_rx_pdm_cfg(&(p_i2s_obj[i2s_num]->hal), dsr);
return i2s_custom_set_clk(i2s_num, p_i2s_obj[i2s_num]->sample_rate,
p_i2s_obj[i2s_num]->bits_per_sample,
p_i2s_obj[i2s_num]->channel_num);
}
#endif
static esp_err_t i2s_custom_check_cfg_static(i2s_port_t i2s_num,
const i2s_config_t *cfg) {
#if SOC_I2S_SUPPORTS_PDM
// We only check if the I2S number is invalid when set to PDM mode.
I2S_CHECK(!((cfg->mode & I2S_MODE_PDM) && (i2s_num != I2S_NUM_0)),
"I2S DAC PDM only support on I2S0", ESP_ERR_INVALID_ARG);
return ESP_OK;
#endif
I2S_CHECK(cfg->communication_format &&
(cfg->communication_format < I2S_COMM_FORMAT_STAND_MAX),
"invalid communication formats", ESP_ERR_INVALID_ARG);
I2S_CHECK(!((cfg->communication_format & I2S_COMM_FORMAT_STAND_MSB) &&
(cfg->communication_format & I2S_COMM_FORMAT_STAND_PCM_LONG)),
"multiple communication formats specified", ESP_ERR_INVALID_ARG);
return ESP_OK;
}
static esp_err_t i2s_param_config(i2s_port_t i2s_num,
const i2s_config_t *i2s_config) {
I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG);
I2S_CHECK((i2s_config), "param null", ESP_ERR_INVALID_ARG);
I2S_CHECK((i2s_custom_check_cfg_static(i2s_num, i2s_config) == ESP_OK),
"param check error", ESP_ERR_INVALID_ARG);
periph_module_enable(i2s_periph_signal[i2s_num].module);
// configure I2S data port interface.
i2s_hal_config_param(&(p_i2s_obj[i2s_num]->hal), i2s_config);
if ((p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) &&
(p_i2s_obj[i2s_num]->mode & I2S_MODE_TX)) {
i2s_hal_enable_sig_loopback(&(p_i2s_obj[i2s_num]->hal));
if (p_i2s_obj[i2s_num]->mode & I2S_MODE_MASTER) {
i2s_hal_enable_master_mode(&(p_i2s_obj[i2s_num]->hal));
} else {
i2s_hal_enable_slave_mode(&(p_i2s_obj[i2s_num]->hal));
}
}
p_i2s_obj[i2s_num]->use_apll = i2s_config->use_apll;
p_i2s_obj[i2s_num]->tx_desc_auto_clear = i2s_config->tx_desc_auto_clear;
p_i2s_obj[i2s_num]->fixed_mclk = i2s_config->fixed_mclk;
return ESP_OK;
}
esp_err_t i2s_custom_zero_dma_buffer(i2s_port_t i2s_num) {
I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG);
if (p_i2s_obj[i2s_num]->rx && p_i2s_obj[i2s_num]->rx->buf != NULL &&
p_i2s_obj[i2s_num]->rx->buf_size != 0) {
for (int i = 0; i < p_i2s_obj[i2s_num]->dma_buf_count; i++) {
memset(p_i2s_obj[i2s_num]->rx->buf[i], 0,
p_i2s_obj[i2s_num]->rx->buf_size);
}
}
if (p_i2s_obj[i2s_num]->tx && p_i2s_obj[i2s_num]->tx->buf != NULL &&
p_i2s_obj[i2s_num]->tx->buf_size != 0) {
int bytes_left = 0;
bytes_left =
(p_i2s_obj[i2s_num]->tx->buf_size - p_i2s_obj[i2s_num]->tx->rw_pos) % 4;
if (bytes_left) {
size_t zero_bytes = 0, bytes_written;
i2s_custom_write(i2s_num, (void *)&zero_bytes, bytes_left, &bytes_written,
portMAX_DELAY);
}
for (int i = 0; i < p_i2s_obj[i2s_num]->dma_buf_count; i++) {
memset(p_i2s_obj[i2s_num]->tx->buf[i], 0,
p_i2s_obj[i2s_num]->tx->buf_size);
}
}
return ESP_OK;
}
esp_err_t i2s_custom_driver_install(i2s_port_t i2s_num,
const i2s_config_t *i2s_config,
int queue_size, void *i2s_queue) {
esp_err_t err;
I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG);
I2S_CHECK((i2s_config != NULL), "I2S configuration must not NULL",
ESP_ERR_INVALID_ARG);
I2S_CHECK(
(i2s_config->dma_buf_count >= 2 && i2s_config->dma_buf_count <= 128),
"I2S buffer count less than 128 and more than 2", ESP_ERR_INVALID_ARG);
I2S_CHECK((i2s_config->dma_buf_len >= 8 && i2s_config->dma_buf_len <= 1024),
"I2S buffer length at most 1024 and more than 8",
ESP_ERR_INVALID_ARG);
if (p_i2s_obj[i2s_num] == NULL) {
p_i2s_obj[i2s_num] = (i2s_obj_t *)malloc(sizeof(i2s_obj_t));
if (p_i2s_obj[i2s_num] == NULL) {
ESP_LOGE(I2S_TAG, "Malloc I2S driver error");
return ESP_ERR_NO_MEM;
}
memset(p_i2s_obj[i2s_num], 0, sizeof(i2s_obj_t));
portMUX_TYPE i2s_spinlock_unlocked[1] = {portMUX_INITIALIZER_UNLOCKED};
for (int x = 0; x < I2S_NUM_MAX; x++) {
i2s_spinlock[x] = i2s_spinlock_unlocked[0];
}
// To make sure hardware is enabled before any hardware register
// operations.
periph_module_enable(i2s_periph_signal[i2s_num].module);
i2s_hal_init(&(p_i2s_obj[i2s_num]->hal), i2s_num);
p_i2s_obj[i2s_num]->i2s_num = i2s_num;
p_i2s_obj[i2s_num]->dma_buf_count = i2s_config->dma_buf_count;
p_i2s_obj[i2s_num]->dma_buf_len = i2s_config->dma_buf_len;
p_i2s_obj[i2s_num]->i2s_queue = i2s_queue;
p_i2s_obj[i2s_num]->mode = i2s_config->mode;
p_i2s_obj[i2s_num]->bits_per_sample = 0;
p_i2s_obj[i2s_num]->bytes_per_sample = 0; // Not initialized yet
p_i2s_obj[i2s_num]->channel_num =
i2s_config->channel_format < I2S_CHANNEL_FMT_ONLY_RIGHT ? 2 : 1;
#ifdef CONFIG_PM_ENABLE
if (i2s_config->use_apll) {
err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "i2s_driver",
&p_i2s_obj[i2s_num]->pm_lock);
} else {
err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "i2s_driver",
&p_i2s_obj[i2s_num]->pm_lock);
}
if (err != ESP_OK) {
free(p_i2s_obj[i2s_num]);
p_i2s_obj[i2s_num] = NULL;
ESP_LOGE(I2S_TAG, "I2S pm lock error");
return err;
}
#endif // CONFIG_PM_ENABLE
// initial interrupt
err = i2s_isr_register(i2s_num, i2s_config->intr_alloc_flags,
i2s_intr_handler_default, p_i2s_obj[i2s_num],
&p_i2s_obj[i2s_num]->i2s_isr_handle);
if (err != ESP_OK) {
#ifdef CONFIG_PM_ENABLE
if (p_i2s_obj[i2s_num]->pm_lock) {
esp_pm_lock_delete(p_i2s_obj[i2s_num]->pm_lock);
}
#endif
free(p_i2s_obj[i2s_num]);
p_i2s_obj[i2s_num] = NULL;
ESP_LOGE(I2S_TAG, "Register I2S Interrupt error");
return err;
}
i2s_custom_stop(i2s_num);
err = i2s_param_config(i2s_num, i2s_config);
if (err != ESP_OK) {
i2s_custom_driver_uninstall(i2s_num);
ESP_LOGE(I2S_TAG, "I2S param configure error");
return err;
}
if (i2s_queue) {
p_i2s_obj[i2s_num]->i2s_queue =
xQueueCreate(queue_size, sizeof(i2s_event_t));
*((QueueHandle_t *)i2s_queue) = p_i2s_obj[i2s_num]->i2s_queue;
ESP_LOGI(I2S_TAG, "queue free spaces: %d",
uxQueueSpacesAvailable(p_i2s_obj[i2s_num]->i2s_queue));
} else {
p_i2s_obj[i2s_num]->i2s_queue = NULL;
}
// set clock and start
return i2s_custom_set_clk(i2s_num, i2s_config->sample_rate,
i2s_config->bits_per_sample,
p_i2s_obj[i2s_num]->channel_num);
}
ESP_LOGW(I2S_TAG, "I2S driver already installed");
return ESP_OK;
}
esp_err_t i2s_custom_driver_uninstall(i2s_port_t i2s_num) {
I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG);
if (p_i2s_obj[i2s_num] == NULL) {
ESP_LOGI(I2S_TAG, "already uninstalled");
return ESP_OK;
}
i2s_custom_stop(i2s_num);
esp_intr_free(p_i2s_obj[i2s_num]->i2s_isr_handle);
if (p_i2s_obj[i2s_num]->tx != NULL &&
(p_i2s_obj[i2s_num]->mode & I2S_MODE_TX)) {
i2s_destroy_dma_queue(i2s_num, p_i2s_obj[i2s_num]->tx);
p_i2s_obj[i2s_num]->tx = NULL;
}
if (p_i2s_obj[i2s_num]->rx != NULL &&
(p_i2s_obj[i2s_num]->mode & I2S_MODE_RX)) {
i2s_destroy_dma_queue(i2s_num, p_i2s_obj[i2s_num]->rx);
p_i2s_obj[i2s_num]->rx = NULL;
}
if (p_i2s_obj[i2s_num]->i2s_queue) {
vQueueDelete(p_i2s_obj[i2s_num]->i2s_queue);
p_i2s_obj[i2s_num]->i2s_queue = NULL;
}
if (p_i2s_obj[i2s_num]->use_apll) {
rtc_clk_apll_enable(0, 0, 0, 0, 0);
}
#ifdef CONFIG_PM_ENABLE
if (p_i2s_obj[i2s_num]->pm_lock) {
esp_pm_lock_delete(p_i2s_obj[i2s_num]->pm_lock);
}
#endif
free(p_i2s_obj[i2s_num]);
p_i2s_obj[i2s_num] = NULL;
periph_module_disable(i2s_periph_signal[i2s_num].module);
return ESP_OK;
}
esp_err_t i2s_custom_write(i2s_port_t i2s_num, const void *src, size_t size,
size_t *bytes_written, TickType_t ticks_to_wait) {
char *data_ptr, *src_byte;
size_t bytes_can_write;
*bytes_written = 0;
I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG);
I2S_CHECK((size < SOC_I2S_MAX_BUFFER_SIZE), "size is too large",
ESP_ERR_INVALID_ARG);
I2S_CHECK((p_i2s_obj[i2s_num]->tx), "tx NULL", ESP_ERR_INVALID_ARG);
xSemaphoreTake(p_i2s_obj[i2s_num]->tx->mux, (portTickType)portMAX_DELAY);
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_acquire(p_i2s_obj[i2s_num]->pm_lock);
#endif
src_byte = (char *)src;
while (size > 0) {
// for (int i = 0; i < p_i2s_obj[i2s_num]->dma_buf_count; i++) {
// ESP_LOGI(I2S_TAG,"%d: EOF %d", i,
// p_i2s_obj[i2s_num]->tx->desc[i]->eof);
// }
if (p_i2s_obj[i2s_num]->tx->rw_pos == p_i2s_obj[i2s_num]->tx->buf_size ||
p_i2s_obj[i2s_num]->tx->curr_ptr == NULL) {
if (xQueueReceive(p_i2s_obj[i2s_num]->tx->queue,
&p_i2s_obj[i2s_num]->tx->curr_ptr,
ticks_to_wait) == pdFALSE) {
break;
}
p_i2s_obj[i2s_num]->tx->rw_pos = 0;
}
ESP_LOGD(I2S_TAG, "size: %d, rw_pos: %d, buf_size: %d, curr_ptr: %d", size,
p_i2s_obj[i2s_num]->tx->rw_pos, p_i2s_obj[i2s_num]->tx->buf_size,
(int)p_i2s_obj[i2s_num]->tx->curr_ptr);
data_ptr = (char *)p_i2s_obj[i2s_num]->tx->curr_ptr;
data_ptr += p_i2s_obj[i2s_num]->tx->rw_pos;
bytes_can_write =
p_i2s_obj[i2s_num]->tx->buf_size - p_i2s_obj[i2s_num]->tx->rw_pos;
if (bytes_can_write > size) {
bytes_can_write = size;
}
memcpy(data_ptr, src_byte, bytes_can_write);
size -= bytes_can_write;
src_byte += bytes_can_write;
p_i2s_obj[i2s_num]->tx->rw_pos += bytes_can_write;
(*bytes_written) += bytes_can_write;
}
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_release(p_i2s_obj[i2s_num]->pm_lock);
#endif
xSemaphoreGive(p_i2s_obj[i2s_num]->tx->mux);
return ESP_OK;
}
esp_err_t i2s_custom_write_expand(i2s_port_t i2s_num, const void *src,
size_t size, size_t src_bits, size_t aim_bits,
size_t *bytes_written,
TickType_t ticks_to_wait) {
char *data_ptr;
int bytes_can_write, tail;
int src_bytes, aim_bytes, zero_bytes;
*bytes_written = 0;
I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG);
I2S_CHECK((size > 0), "size must greater than zero", ESP_ERR_INVALID_ARG);
I2S_CHECK((aim_bits * size < SOC_I2S_MAX_BUFFER_SIZE), "size is too large",
ESP_ERR_INVALID_ARG);
I2S_CHECK((aim_bits >= src_bits), "aim_bits mustn't be less than src_bits",
ESP_ERR_INVALID_ARG);
I2S_CHECK((p_i2s_obj[i2s_num]->tx), "tx NULL", ESP_ERR_INVALID_ARG);
if (src_bits < I2S_BITS_PER_SAMPLE_8BIT ||
aim_bits < I2S_BITS_PER_SAMPLE_8BIT) {
ESP_LOGE(I2S_TAG, "bits mustn't be less than 8, src_bits %d aim_bits %d",
src_bits, aim_bits);
return ESP_ERR_INVALID_ARG;
}
if (src_bits > I2S_BITS_PER_SAMPLE_32BIT ||
aim_bits > I2S_BITS_PER_SAMPLE_32BIT) {
ESP_LOGE(I2S_TAG,
"bits mustn't be greater than 32, src_bits %d aim_bits %d",
src_bits, aim_bits);
return ESP_ERR_INVALID_ARG;
}
if ((src_bits == I2S_BITS_PER_SAMPLE_16BIT ||
src_bits == I2S_BITS_PER_SAMPLE_32BIT) &&
(size % 2 != 0)) {
ESP_LOGE(I2S_TAG,
"size must be a even number while src_bits is even, src_bits "
"%d size %d",
src_bits, size);
return ESP_ERR_INVALID_ARG;
}
if (src_bits == I2S_BITS_PER_SAMPLE_24BIT && (size % 3 != 0)) {
ESP_LOGE(I2S_TAG,
"size must be a multiple of 3 while src_bits is 24, size %d",
size);
return ESP_ERR_INVALID_ARG;
}
src_bytes = src_bits / 8;
aim_bytes = aim_bits / 8;
zero_bytes = aim_bytes - src_bytes;
xSemaphoreTake(p_i2s_obj[i2s_num]->tx->mux, (portTickType)portMAX_DELAY);
size = size * aim_bytes / src_bytes;
ESP_LOGD(I2S_TAG, "aim_bytes %d src_bytes %d size %d", aim_bytes, src_bytes,
size);
while (size > 0) {
if (p_i2s_obj[i2s_num]->tx->rw_pos == p_i2s_obj[i2s_num]->tx->buf_size ||
p_i2s_obj[i2s_num]->tx->curr_ptr == NULL) {
if (xQueueReceive(p_i2s_obj[i2s_num]->tx->queue,
&p_i2s_obj[i2s_num]->tx->curr_ptr,
ticks_to_wait) == pdFALSE) {
break;
}
p_i2s_obj[i2s_num]->tx->rw_pos = 0;
}
data_ptr = (char *)p_i2s_obj[i2s_num]->tx->curr_ptr;
data_ptr += p_i2s_obj[i2s_num]->tx->rw_pos;
bytes_can_write =
p_i2s_obj[i2s_num]->tx->buf_size - p_i2s_obj[i2s_num]->tx->rw_pos;
if (bytes_can_write > (int)size) {
bytes_can_write = size;
}
tail = bytes_can_write % aim_bytes;
bytes_can_write = bytes_can_write - tail;
memset(data_ptr, 0, bytes_can_write);
for (int j = 0; j < bytes_can_write; j += (aim_bytes - zero_bytes)) {
j += zero_bytes;
memcpy(&data_ptr[j], (const char *)(src + *bytes_written),
aim_bytes - zero_bytes);
(*bytes_written) += (aim_bytes - zero_bytes);
}
size -= bytes_can_write;
p_i2s_obj[i2s_num]->tx->rw_pos += bytes_can_write;
}
xSemaphoreGive(p_i2s_obj[i2s_num]->tx->mux);
return ESP_OK;
}
esp_err_t i2s_custom_read(i2s_port_t i2s_num, void *dest, size_t size,
size_t *bytes_read, TickType_t ticks_to_wait) {
char *data_ptr, *dest_byte;
int bytes_can_read;
*bytes_read = 0;
dest_byte = (char *)dest;
I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG);
I2S_CHECK((size < SOC_I2S_MAX_BUFFER_SIZE), "size is too large",
ESP_ERR_INVALID_ARG);
I2S_CHECK((p_i2s_obj[i2s_num]->rx), "rx NULL", ESP_ERR_INVALID_ARG);
xSemaphoreTake(p_i2s_obj[i2s_num]->rx->mux, (portTickType)portMAX_DELAY);
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_acquire(p_i2s_obj[i2s_num]->pm_lock);
#endif
while (size > 0) {
if (p_i2s_obj[i2s_num]->rx->rw_pos == p_i2s_obj[i2s_num]->rx->buf_size ||
p_i2s_obj[i2s_num]->rx->curr_ptr == NULL) {
if (xQueueReceive(p_i2s_obj[i2s_num]->rx->queue,
&p_i2s_obj[i2s_num]->rx->curr_ptr,
ticks_to_wait) == pdFALSE) {
break;
}
p_i2s_obj[i2s_num]->rx->rw_pos = 0;
}
data_ptr = (char *)p_i2s_obj[i2s_num]->rx->curr_ptr;
data_ptr += p_i2s_obj[i2s_num]->rx->rw_pos;
bytes_can_read =
p_i2s_obj[i2s_num]->rx->buf_size - p_i2s_obj[i2s_num]->rx->rw_pos;
if (bytes_can_read > (int)size) {
bytes_can_read = size;
}
memcpy(dest_byte, data_ptr, bytes_can_read);
size -= bytes_can_read;
dest_byte += bytes_can_read;
p_i2s_obj[i2s_num]->rx->rw_pos += bytes_can_read;
(*bytes_read) += bytes_can_read;
}
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_release(p_i2s_obj[i2s_num]->pm_lock);
#endif
xSemaphoreGive(p_i2s_obj[i2s_num]->rx->mux);
return ESP_OK;
}