work in progress which eventually will enable the user to configure dsp processor on the fly using an on device http server. first try and possible fix for #22 Signed-off-by: Karl Osterseher <karli_o@gmx.at>
654 lines
19 KiB
C
654 lines
19 KiB
C
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <sys/time.h>
|
|
|
|
#include "freertos/FreeRTOS.h"
|
|
|
|
#if CONFIG_USE_DSP_PROCESSOR
|
|
#include "dsps_biquad.h"
|
|
#include "dsps_biquad_gen.h"
|
|
#include "esp_log.h"
|
|
#include "freertos/queue.h"
|
|
|
|
#include "dsp_processor.h"
|
|
|
|
#ifdef CONFIG_USE_BIQUAD_ASM
|
|
#define BIQUAD dsps_biquad_f32_ae32
|
|
#else
|
|
#define BIQUAD dsps_biquad_f32
|
|
#endif
|
|
|
|
static const char *TAG = "dspProc";
|
|
|
|
#define DSP_PROCESSOR_LEN 16
|
|
|
|
static QueueHandle_t filterUpdateQHdl = NULL;
|
|
|
|
static filterParams_t filterParams;
|
|
|
|
static ptype_t *filter = NULL;
|
|
|
|
static double dynamic_vol = 1.0;
|
|
|
|
static bool init = false;
|
|
|
|
static float *sbuffer0 = NULL;
|
|
static float *sbufout0 = NULL;
|
|
|
|
#if CONFIG_USE_DSP_PROCESSOR
|
|
#if CONFIG_SNAPCLIENT_DSP_FLOW_STEREO
|
|
dspFlows_t dspFlowInit = dspfStereo;
|
|
#endif
|
|
#if CONFIG_SNAPCLIENT_DSP_FLOW_BASSBOOST
|
|
dspFlows_t dspFlowInit = dspfBassBoost;
|
|
#endif
|
|
#if CONFIG_SNAPCLIENT_DSP_FLOW_BIAMP
|
|
dspFlows_t dspFlowInit = dspfBiamp;
|
|
#endif
|
|
#if CONFIG_SNAPCLIENT_DSP_FLOW_BASS_TREBLE_EQ
|
|
dspFlows_t dspFlowInit = dspfEQBassTreble;
|
|
#endif
|
|
#endif
|
|
|
|
/**
|
|
*
|
|
*/
|
|
void dsp_processor_init(void) {
|
|
init = false;
|
|
|
|
if (filterUpdateQHdl) {
|
|
vQueueDelete(filterUpdateQHdl);
|
|
filterUpdateQHdl = NULL;
|
|
}
|
|
|
|
// have a max queue length of 1 here because we use xQueueOverwrite
|
|
// to write to the queue
|
|
filterUpdateQHdl = xQueueCreate(1, sizeof(filterParams_t));
|
|
if (filterUpdateQHdl == NULL) {
|
|
ESP_LOGE(TAG, "%s: Failed to create filter update queue", __func__);
|
|
return;
|
|
}
|
|
|
|
// TODO: load this data from NVM if available
|
|
filterParams.dspFlow = dspFlowInit;
|
|
|
|
switch (filterParams.dspFlow) {
|
|
case dspfEQBassTreble: {
|
|
filterParams.fc_1 = 300.0;
|
|
filterParams.gain_1 = 0.0;
|
|
filterParams.fc_3 = 4000.0;
|
|
filterParams.gain_3 = 0.0;
|
|
|
|
break;
|
|
}
|
|
|
|
case dspfStereo: {
|
|
break;
|
|
}
|
|
|
|
case dspfBassBoost: {
|
|
filterParams.fc_1 = 300.0;
|
|
filterParams.gain_1 = 6.0;
|
|
break;
|
|
}
|
|
|
|
case dspfBiamp: {
|
|
filterParams.fc_1 = 300.0;
|
|
filterParams.gain_1 = 0;
|
|
filterParams.fc_3 = 100.0;
|
|
filterParams.gain_3 = 0.0;
|
|
break;
|
|
}
|
|
|
|
case dspf2DOT1: { // Process audio L + R LOW PASS FILTER
|
|
ESP_LOGW(TAG, "dspf2DOT1, not implemented yet, using stereo instead");
|
|
} break;
|
|
|
|
case dspfFunkyHonda: { // Process audio L + R LOW PASS FILTER
|
|
ESP_LOGW(TAG,
|
|
"dspfFunkyHonda, not implemented yet, using stereo instead");
|
|
break;
|
|
}
|
|
|
|
default: { break; }
|
|
}
|
|
|
|
ESP_LOGI(TAG, "%s: init done", __func__);
|
|
}
|
|
|
|
/**
|
|
* free previously allocated memories
|
|
*/
|
|
void dsp_processor_uninit(void) {
|
|
if (sbuffer0) {
|
|
free(sbuffer0);
|
|
sbuffer0 = NULL;
|
|
}
|
|
|
|
if (sbufout0) {
|
|
free(sbufout0);
|
|
sbufout0 = NULL;
|
|
}
|
|
|
|
if (filter) {
|
|
free(filter);
|
|
filter = NULL;
|
|
}
|
|
|
|
if (filterUpdateQHdl) {
|
|
vQueueDelete(filterUpdateQHdl);
|
|
filterUpdateQHdl = NULL;
|
|
}
|
|
|
|
init = false;
|
|
|
|
ESP_LOGI(TAG, "%s: uninit done", __func__);
|
|
}
|
|
|
|
/**
|
|
*
|
|
*/
|
|
esp_err_t dsp_processor_update_filter_params(filterParams_t *params) {
|
|
if (filterUpdateQHdl) {
|
|
if (xQueueOverwrite(filterUpdateQHdl, params) == pdTRUE) {
|
|
return ESP_OK;
|
|
}
|
|
}
|
|
|
|
return ESP_FAIL;
|
|
}
|
|
|
|
/**
|
|
*
|
|
*/
|
|
static int32_t dsp_processor_gen_filter(ptype_t *filter, uint32_t cnt) {
|
|
if ((filter == NULL) && (cnt > 0)) {
|
|
return ESP_FAIL;
|
|
}
|
|
|
|
for (int n = 0; n < cnt; n++) {
|
|
switch (filter[n].filtertype) {
|
|
case HIGHSHELF:
|
|
dsps_biquad_gen_highShelf_f32(filter[n].coeffs, filter[n].freq,
|
|
filter[n].gain, filter[n].q);
|
|
break;
|
|
|
|
case LOWSHELF:
|
|
dsps_biquad_gen_lowShelf_f32(filter[n].coeffs, filter[n].freq,
|
|
filter[n].gain, filter[n].q);
|
|
break;
|
|
|
|
case LPF:
|
|
dsps_biquad_gen_lpf_f32(filter[n].coeffs, filter[n].freq, filter[n].q);
|
|
break;
|
|
|
|
case HPF:
|
|
dsps_biquad_gen_hpf_f32(filter[n].coeffs, filter[n].freq, filter[n].q);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
// for (uint8_t i = 0; i <= 4; i++) {
|
|
// printf("%.6f ", filter[n].coeffs[i]);
|
|
// }
|
|
// printf("\n");
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
/**
|
|
*
|
|
*/
|
|
int dsp_processor_worker(char *audio, size_t chunk_size, uint32_t samplerate) {
|
|
int16_t len = chunk_size / 4;
|
|
int16_t valint;
|
|
uint16_t i;
|
|
// volatile needed to ensure 32 bit access
|
|
volatile uint32_t *audio_tmp = (volatile uint32_t *)audio;
|
|
dspFlows_t dspFlow;
|
|
|
|
// check if we need to update filters
|
|
if (xQueueReceive(filterUpdateQHdl, &filterParams, pdMS_TO_TICKS(0)) ==
|
|
pdTRUE) {
|
|
init = false;
|
|
|
|
// TODO: store filterParams in NVM
|
|
}
|
|
|
|
dspFlow = filterParams.dspFlow;
|
|
|
|
if (init == false) {
|
|
uint32_t cnt = 0;
|
|
|
|
if (filter) {
|
|
free(filter);
|
|
filter = NULL;
|
|
}
|
|
|
|
switch (dspFlow) {
|
|
case dspfEQBassTreble: {
|
|
cnt = 4;
|
|
|
|
filter =
|
|
(ptype_t *)heap_caps_malloc(sizeof(ptype_t) * cnt, MALLOC_CAP_8BIT);
|
|
if (filter) {
|
|
// simple EQ control of low and high frequencies (bass, treble)
|
|
float bass_fc = filterParams.fc_1 / samplerate;
|
|
float bass_gain = filterParams.gain_1;
|
|
float treble_fc = filterParams.fc_3 / samplerate;
|
|
float treble_gain = filterParams.gain_3;
|
|
|
|
// filters for CH 0
|
|
filter[0] = (ptype_t){LOWSHELF, bass_fc, bass_gain, 0.707,
|
|
NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
filter[1] = (ptype_t){HIGHSHELF, treble_fc, treble_gain, 0.707,
|
|
NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
// filters for CH 1
|
|
filter[2] = (ptype_t){LOWSHELF, bass_fc, bass_gain, 0.707,
|
|
NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
filter[3] = (ptype_t){HIGHSHELF, treble_fc, treble_gain, 0.707,
|
|
NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
|
|
ESP_LOGI(TAG, "got new setting for dspfEQBassTreble");
|
|
} else {
|
|
ESP_LOGE(TAG, "failed to get memory for filter");
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case dspfStereo: {
|
|
cnt = 0;
|
|
break;
|
|
}
|
|
|
|
case dspfBassBoost: {
|
|
cnt = 2;
|
|
|
|
filter =
|
|
(ptype_t *)heap_caps_malloc(sizeof(ptype_t) * cnt, MALLOC_CAP_8BIT);
|
|
if (filter) {
|
|
float bass_fc = filterParams.fc_1 / samplerate;
|
|
float bass_gain = 6.0;
|
|
|
|
filter[0] = (ptype_t){LOWSHELF, bass_fc, bass_gain, 0.707,
|
|
NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
filter[1] = (ptype_t){LOWSHELF, bass_fc, bass_gain, 0.707,
|
|
NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
|
|
ESP_LOGI(TAG, "got new setting for dspfBassBoost");
|
|
} else {
|
|
ESP_LOGE(TAG, "failed to get memory for filter");
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case dspfBiamp: {
|
|
cnt = 4;
|
|
|
|
filter =
|
|
(ptype_t *)heap_caps_malloc(sizeof(ptype_t) * cnt, MALLOC_CAP_8BIT);
|
|
if (filter) {
|
|
float lp_fc = filterParams.fc_1 / samplerate;
|
|
float lp_gain = filterParams.gain_1;
|
|
float hp_fc = filterParams.fc_3 / samplerate;
|
|
float hp_gain = filterParams.gain_3;
|
|
|
|
filter[0] = (ptype_t){LPF, lp_fc, lp_gain, 0.707,
|
|
NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
filter[1] = (ptype_t){LPF, lp_fc, lp_gain, 0.707,
|
|
NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
filter[2] = (ptype_t){HPF, hp_fc, hp_gain, 0.707,
|
|
NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
filter[3] = (ptype_t){HPF, hp_fc, hp_gain, 0.707,
|
|
NULL, NULL, {0, 0, 0, 0, 0}, {0, 0}};
|
|
|
|
ESP_LOGI(TAG, "got new setting for dspfBiamp");
|
|
} else {
|
|
ESP_LOGE(TAG, "failed to get memory for filter");
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case dspf2DOT1: { // Process audio L + R LOW PASS FILTER
|
|
cnt = 0;
|
|
dspFlow = dspfStereo;
|
|
|
|
ESP_LOGW(TAG, "dspf2DOT1, not implemented yet, using stereo instead");
|
|
} break;
|
|
|
|
case dspfFunkyHonda: { // Process audio L + R LOW PASS FILTER
|
|
cnt = 0;
|
|
dspFlow = dspfStereo;
|
|
|
|
ESP_LOGW(TAG,
|
|
"dspfFunkyHonda, not implemented yet, using stereo instead");
|
|
break;
|
|
}
|
|
|
|
default: { break; }
|
|
}
|
|
|
|
dsp_processor_gen_filter(filter, cnt);
|
|
|
|
init = true;
|
|
}
|
|
|
|
// only process data if it is valid
|
|
if (audio_tmp) {
|
|
sbuffer0 = (float *)heap_caps_malloc(sizeof(float) * DSP_PROCESSOR_LEN,
|
|
MALLOC_CAP_8BIT);
|
|
if (sbuffer0 == NULL) {
|
|
ESP_LOGE(TAG, "No Memory allocated for dsp_processor sbuffer0");
|
|
|
|
return -1;
|
|
}
|
|
|
|
sbufout0 = (float *)heap_caps_malloc(sizeof(float) * DSP_PROCESSOR_LEN,
|
|
MALLOC_CAP_8BIT);
|
|
if (sbufout0 == NULL) {
|
|
ESP_LOGE(TAG, "No Memory allocated for dsp_processor sbufout0");
|
|
|
|
free(sbuffer0);
|
|
|
|
return -1;
|
|
}
|
|
|
|
switch (dspFlow) {
|
|
case dspfEQBassTreble: {
|
|
for (int k = 0; k < len; k += DSP_PROCESSOR_LEN) {
|
|
volatile uint32_t *tmp = (uint32_t *)(&audio_tmp[k]);
|
|
uint32_t max = DSP_PROCESSOR_LEN;
|
|
uint32_t test = len - k;
|
|
|
|
if (test < DSP_PROCESSOR_LEN) {
|
|
max = test;
|
|
}
|
|
|
|
// channel 0
|
|
for (i = 0; i < max; i++) {
|
|
sbuffer0[i] = dynamic_vol * /*0.5 **/
|
|
((float)((int16_t)(tmp[i] & 0xFFFF))) / INT16_MAX;
|
|
}
|
|
|
|
// BASS
|
|
BIQUAD(sbuffer0, sbufout0, max, filter[0].coeffs, filter[0].w);
|
|
// TREBLE
|
|
BIQUAD(sbufout0, sbuffer0, max, filter[1].coeffs, filter[1].w);
|
|
|
|
for (i = 0; i < max; i++) {
|
|
valint = (int16_t)(sbuffer0[i] * INT16_MAX);
|
|
tmp[i] =
|
|
(volatile uint32_t)((tmp[i] & 0xFFFF0000) + (uint32_t)valint);
|
|
}
|
|
|
|
// channel 1
|
|
for (i = 0; i < max; i++) {
|
|
sbuffer0[i] = dynamic_vol * /*0.5 **/
|
|
((float)((int16_t)((tmp[i] & 0xFFFF0000) >> 16))) /
|
|
INT16_MAX;
|
|
}
|
|
|
|
// BASS
|
|
BIQUAD(sbuffer0, sbufout0, max, filter[2].coeffs, filter[2].w);
|
|
// TREBLE
|
|
BIQUAD(sbufout0, sbuffer0, max, filter[3].coeffs, filter[3].w);
|
|
|
|
for (i = 0; i < max; i++) {
|
|
valint = (int16_t)(sbuffer0[i] * INT16_MAX);
|
|
tmp[i] = (volatile uint32_t)((tmp[i] & 0xFFFF) +
|
|
((uint32_t)valint << 16));
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case dspfStereo: {
|
|
for (int k = 0; k < len; k += DSP_PROCESSOR_LEN) {
|
|
volatile uint32_t *tmp = (uint32_t *)(&audio_tmp[k]);
|
|
uint32_t max = DSP_PROCESSOR_LEN;
|
|
uint32_t test = len - k;
|
|
|
|
if (test < DSP_PROCESSOR_LEN) {
|
|
max = test;
|
|
}
|
|
|
|
// set volume
|
|
if (dynamic_vol != 1.0) {
|
|
for (i = 0; i < max; i++) {
|
|
tmp[i] =
|
|
((uint32_t)(dynamic_vol *
|
|
((float)((int16_t)((tmp[i] & 0xFFFF0000) >> 16))))
|
|
<< 16) +
|
|
(uint32_t)(dynamic_vol *
|
|
((float)((int16_t)(tmp[i] & 0xFFFF))));
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case dspfBassBoost: { // CH0 low shelf 6dB @ 400Hz
|
|
for (int k = 0; k < len; k += DSP_PROCESSOR_LEN) {
|
|
volatile uint32_t *tmp = (uint32_t *)(&audio_tmp[k]);
|
|
uint32_t max = DSP_PROCESSOR_LEN;
|
|
uint32_t test = len - k;
|
|
|
|
if (test < DSP_PROCESSOR_LEN) {
|
|
max = test;
|
|
}
|
|
|
|
// channel 0
|
|
for (i = 0; i < max; i++) {
|
|
sbuffer0[i] = dynamic_vol * 0.5 *
|
|
((float)((int16_t)(tmp[i] & 0xFFFF))) / INT16_MAX;
|
|
}
|
|
BIQUAD(sbuffer0, sbufout0, max, filter[0].coeffs, filter[0].w);
|
|
|
|
for (i = 0; i < max; i++) {
|
|
valint = (int16_t)(sbufout0[i] * INT16_MAX);
|
|
tmp[i] = (tmp[i] & 0xFFFF0000) + (uint32_t)valint;
|
|
}
|
|
|
|
// channel 1
|
|
for (i = 0; i < max; i++) {
|
|
sbuffer0[i] = dynamic_vol * 0.5 *
|
|
((float)((int16_t)((tmp[i] & 0xFFFF0000) >> 16))) /
|
|
INT16_MAX;
|
|
}
|
|
BIQUAD(sbuffer0, sbufout0, max, filter[1].coeffs, filter[1].w);
|
|
|
|
for (i = 0; i < max; i++) {
|
|
valint = (int16_t)(sbufout0[i] * INT16_MAX);
|
|
tmp[i] = (tmp[i] & 0xFFFF) + ((uint32_t)valint << 16);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case dspfBiamp: {
|
|
for (int k = 0; k < len; k += DSP_PROCESSOR_LEN) {
|
|
volatile uint32_t *tmp = (uint32_t *)(&audio_tmp[k]);
|
|
uint32_t max = DSP_PROCESSOR_LEN;
|
|
uint32_t test = len - k;
|
|
|
|
if (test < DSP_PROCESSOR_LEN) {
|
|
max = test;
|
|
}
|
|
|
|
// Process audio ch0 LOW PASS FILTER
|
|
for (i = 0; i < max; i++) {
|
|
sbuffer0[i] = dynamic_vol * 0.5 *
|
|
((float)((int16_t)(tmp[i] & 0xFFFF))) / INT16_MAX;
|
|
}
|
|
BIQUAD(sbuffer0, sbufout0, max, filter[0].coeffs, filter[0].w);
|
|
BIQUAD(sbufout0, sbuffer0, max, filter[1].coeffs, filter[1].w);
|
|
|
|
for (i = 0; i < max; i++) {
|
|
valint = (int16_t)(sbuffer0[i] * INT16_MAX);
|
|
tmp[i] = (tmp[i] & 0xFFFF0000) + (uint32_t)valint;
|
|
}
|
|
|
|
// Process audio ch1 HIGH PASS FILTER
|
|
for (i = 0; i < max; i++) {
|
|
sbuffer0[i] = dynamic_vol * 0.5 *
|
|
((float)((int16_t)((tmp[i] & 0xFFFF0000) >> 16))) /
|
|
INT16_MAX;
|
|
}
|
|
BIQUAD(sbuffer0, sbufout0, max, filter[2].coeffs, filter[2].w);
|
|
BIQUAD(sbufout0, sbuffer0, max, filter[3].coeffs, filter[3].w);
|
|
|
|
for (i = 0; i < max; i++) {
|
|
valint = (int16_t)(sbuffer0[i] * INT16_MAX);
|
|
tmp[i] = (tmp[i] & 0xFFFF) + ((uint32_t)valint << 16);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case dspf2DOT1: { // Process audio L + R LOW PASS FILTER
|
|
/*
|
|
BIQUAD(sbuffer2, sbuftmp0, len, bq[0].coeffs, bq[0].w);
|
|
BIQUAD(sbuftmp0, sbufout2, len, bq[1].coeffs, bq[1].w);
|
|
|
|
// Process audio L HIGH PASS FILTER
|
|
BIQUAD(sbuffer0, sbuftmp0, len, bq[2].coeffs, bq[2].w);
|
|
BIQUAD(sbuftmp0, sbufout0, len, bq[3].coeffs, bq[3].w);
|
|
|
|
// Process audio R HIGH PASS FILTER
|
|
BIQUAD(sbuffer1, sbuftmp0, len, bq[4].coeffs, bq[4].w);
|
|
BIQUAD(sbuftmp0, sbufout1, len, bq[5].coeffs, bq[5].w);
|
|
|
|
int16_t valint[5];
|
|
for (uint16_t i = 0; i < len; i++) {
|
|
valint[0] =
|
|
(muteCH[0] == 1) ? (int16_t)0 : (int16_t)(sbufout0[i] *
|
|
INT16_MAX); valint[1] = (muteCH[1] == 1) ? (int16_t)0 :
|
|
(int16_t)(sbufout1[i] * INT16_MAX); valint[2] = (muteCH[2] == 1) ?
|
|
(int16_t)0 : (int16_t)(sbufout2[i] * INT16_MAX); dsp_audio[i * 4 + 0]
|
|
= (valint[2] & 0xff); dsp_audio[i * 4 + 1] = ((valint[2] & 0xff00) >>
|
|
8); dsp_audio[i * 4 + 2] = 0; dsp_audio[i * 4 + 3] = 0;
|
|
|
|
dsp_audio1[i * 4 + 0] = (valint[0] & 0xff);
|
|
dsp_audio1[i * 4 + 1] = ((valint[0] & 0xff00) >> 8);
|
|
dsp_audio1[i * 4 + 2] = (valint[1] & 0xff);
|
|
dsp_audio1[i * 4 + 3] = ((valint[1] & 0xff00) >> 8);
|
|
}
|
|
|
|
// TODO: this copy could be avoided if dsp_audio buffers are
|
|
// allocated dynamically and pointers are exchanged after
|
|
// audio was freed
|
|
memcpy(audio, dsp_audio, chunk_size);
|
|
|
|
ESP_LOGW(TAG, "Don't know what to do with dsp_audio1");
|
|
*/
|
|
ESP_LOGW(TAG, "dspf2DOT1, not implemented yet, using stereo instead");
|
|
} break;
|
|
|
|
case dspfFunkyHonda: { // Process audio L + R LOW PASS FILTER
|
|
/*
|
|
BIQUAD(sbuffer2, sbuftmp0, len, bq[0].coeffs, bq[0].w);
|
|
BIQUAD(sbuftmp0, sbufout2, len, bq[1].coeffs, bq[1].w);
|
|
|
|
// Process audio L HIGH PASS FILTER
|
|
BIQUAD(sbuffer0, sbuftmp0, len, bq[2].coeffs, bq[2].w);
|
|
BIQUAD(sbuftmp0, sbufout0, len, bq[3].coeffs, bq[3].w);
|
|
|
|
// Process audio R HIGH PASS FILTER
|
|
BIQUAD(sbuffer1, sbuftmp0, len, bq[4].coeffs, bq[4].w);
|
|
BIQUAD(sbuftmp0, sbufout1, len, bq[5].coeffs, bq[5].w);
|
|
|
|
uint16_t scale = 16384; // INT16_MAX
|
|
int16_t valint[5];
|
|
for (uint16_t i = 0; i < len; i++) {
|
|
valint[0] =
|
|
(muteCH[0] == 1) ? (int16_t)0 : (int16_t)(sbufout0[i] * scale);
|
|
valint[1] =
|
|
(muteCH[1] == 1) ? (int16_t)0 : (int16_t)(sbufout1[i] * scale);
|
|
valint[2] =
|
|
(muteCH[2] == 1) ? (int16_t)0 : (int16_t)(sbufout2[i] * scale);
|
|
valint[3] = valint[0] + valint[2];
|
|
valint[4] = -valint[2];
|
|
valint[5] = -valint[1] - valint[2];
|
|
dsp_audio[i * 4 + 0] = (valint[3] & 0xff);
|
|
dsp_audio[i * 4 + 1] = ((valint[3] & 0xff00) >> 8);
|
|
dsp_audio[i * 4 + 2] = (valint[2] & 0xff);
|
|
dsp_audio[i * 4 + 3] = ((valint[2] & 0xff00) >> 8);
|
|
|
|
dsp_audio1[i * 4 + 0] = (valint[4] & 0xff);
|
|
dsp_audio1[i * 4 + 1] = ((valint[4] & 0xff00) >> 8);
|
|
dsp_audio1[i * 4 + 2] = (valint[5] & 0xff);
|
|
dsp_audio1[i * 4 + 3] = ((valint[5] & 0xff00) >> 8);
|
|
}
|
|
|
|
// TODO: this copy could be avoided if dsp_audio buffers are
|
|
// allocated dynamically and pointers are exchanged after
|
|
// audio was freed
|
|
memcpy(audio, dsp_audio, chunk_size);
|
|
|
|
ESP_LOGW(TAG, "Don't know what to do with dsp_audio1");
|
|
*/
|
|
ESP_LOGW(TAG,
|
|
"dspfFunkyHonda, not implemented yet, using stereo instead");
|
|
} break;
|
|
|
|
default: { } break; }
|
|
|
|
free(sbuffer0);
|
|
sbuffer0 = NULL;
|
|
|
|
free(sbufout0);
|
|
sbufout0 = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// void dsp_set_xoverfreq(uint8_t freqh, uint8_t freql, uint32_t samplerate) {
|
|
// float freq = freqh * 256 + freql;
|
|
// // printf("%f\n", freq);
|
|
// float f = freq / samplerate / 2.;
|
|
// for (int8_t n = 0; n <= 5; n++) {
|
|
// bq[n].freq = f;
|
|
// switch (bq[n].filtertype) {
|
|
// case LPF:
|
|
// // for (uint8_t i = 0; i <= 4; i++) {
|
|
// // printf("%.6f ", bq[n].coeffs[i]);
|
|
// // }
|
|
// // printf("\n");
|
|
// dsps_biquad_gen_lpf_f32(bq[n].coeffs, bq[n].freq, bq[n].q);
|
|
// // for (uint8_t i = 0; i <= 4; i++) {
|
|
// // printf("%.6f ", bq[n].coeffs[i]);
|
|
// // }
|
|
// // printf("%f \n", bq[n].freq);
|
|
// break;
|
|
// case HPF:
|
|
// dsps_biquad_gen_hpf_f32(bq[n].coeffs, bq[n].freq, bq[n].q);
|
|
// break;
|
|
// default:
|
|
// break;
|
|
// }
|
|
// }
|
|
//}
|
|
|
|
/**
|
|
*
|
|
*/
|
|
void dsp_processor_set_volome(double volume) {
|
|
if (volume >= 0 && volume <= 1.0) {
|
|
ESP_LOGI(TAG, "Set volume to %f", volume);
|
|
dynamic_vol = volume;
|
|
}
|
|
}
|
|
#endif
|